22–27 Jul 2012
Embassy Suites Napa Valley
US/Pacific timezone

Nanoscale layering of antiferromagnetic and superconducting phases in Rb2Fe4Se5

24 Jul 2012, 20:00
2h
Fountain Court (Embassy Suites Napa Valley)

Fountain Court

Embassy Suites Napa Valley

Board: 64
Poster Nanoscale Spectroscopies Poster Session 2

Speaker

Aliaksei Charnukha (Max Planck Institute for Solid State research)

Description

A. Charnukha,1 A. Cvitkovic,2 T. Prokscha,3 D. Pr¨opper,1 N. Ocelic,2 A. Suter,3 Z. Salman,3 E. Morenzoni,3 J. Deisenhofer,4 V. Tsurkan,4, 5 A. Loidl,4 B. Keimer,1 and A. V. Boris1 1Max-Planck-Institut f¨ur Festk¨orperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany 2Neaspec GmbH, D-82152 Martinsried (Munich), Germany 3Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute (PSI), CH-5232 Villigen PSI, Switzerland 4Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86159 Augsburg, Germany 5Institute of Applied Physics, Academy of Sciences of Moldova, MD-2028 Chisinau, R. Moldova We studied phase separation in a single-crystalline antiferromagnetic superconductor Rb2Fe4Se5 (RFS) using a combination of scattering-type scanning near-field optical microscopy (s-SNOM) and low-energy muon spin rotation (LE-mSR). We demonstrate that the antiferromagnetic and superconducting phases segregate into nanometer-thick layers perpendicular to the iron-selenide planes, while the characteristic in-plane size of the metallic domains reaches 10 mm. By means of LE-mSR we further show that in a 40-nm thick surface layer the ordered antiferromagnetic moment is drastically reduced, while the volume fraction of the paramagnetic phase is significantly enhanced over its bulk value. Self-organization into a quasiregular heterostructure indicates an intimate connection between the modulated superconducting and antiferromagnetic phases.

Primary author

Aliaksei Charnukha (Max Planck Institute for Solid State research)

Presentation materials

There are no materials yet.