

LBNL Bi-2212 magnets status and milestones adjustment

Tengming Shen, Laura Garcia Fajardo, Ray Hafalia Jr. (for the LBNL US MDP team)

Lawrence Berkeley National Laboratory

With inputs from

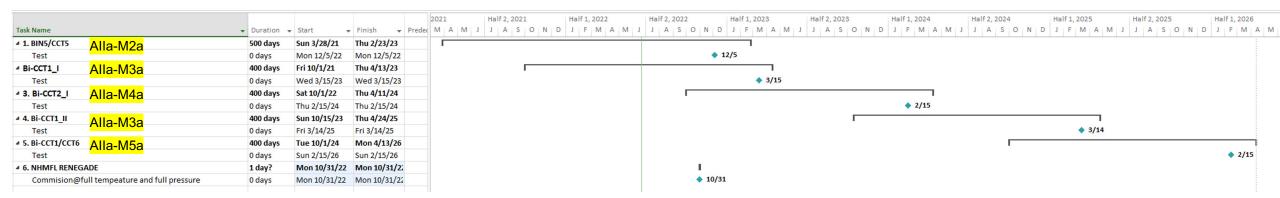
Daniel Davis, Ulf Trociewitz, David Larbalestier

National High Magnetic Field Laboratory

Outline

- Having fabricated single racetrack coils (RC1-6), 4.7 T common coil dipole magnet RC7n8, and a single CCT coil BIN5aOL, BIN5c1 magnet, the first (but short, 39 cm long) Bi-2212 CCT magnet.
- MDP milestones updates/adjustments, rationales, and risk analysis.
- Task status.

MDP milestones updates – CCT effort within the Bi-2212 area of the MDP


- First (but short) CCT dipole magnets, fab & design verification, operation experience.
- Hybrid magnet of 8-10 T, from fab (e.g. assembly) to operation (e.g. quench protection)
- Scale up to 1 m long magnets.
- Increase dipole field generation (SSL from 4.6 T to 6.4 T, or expected field from 3.5 T to 5 T) with cables with varying sizes and strand design.
- Hybrid magnet(s) of >11 T.

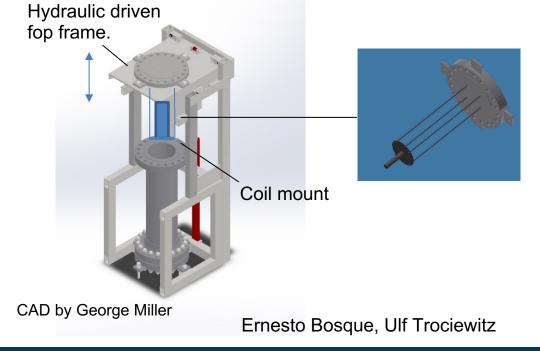
	Milestones for the CCT effort within the Bi-2212 area of the MDP									
Milestone #	Description	Status *	Updated Target	Comments						
Alla-M1a	Build and test two 2.4 T, 40 cm long BIN5c dipole magnets.	Completed		BIN5c1 magnet tested. BIN5c2 coils fabricated (but not tested) and are backup for the Alla-M2a.						
Alla-M2a	Hybrid magnet test with a total field generation of 8-10 T at 4.2 K. Assemble and test BIN5c in the background field of the Nb $_3$ Sn CCT5		Dec-22	Modify description to "Hybrid magnet test with a total field generation of 8-10 T at 4.2 K. Assemble and test BIN5c inside the 90 mm bore Nb ₃ Sn CCT5 magnet."						
Alla-M3a	Build and test two 3.5 T, 80 cm long, Bi-2212 dipole magnet with 17-strand, 7.8 mm wide Rutherford cables.	In progress		Modify description to "Build and test two Bi-CCT1, a 3.5 T, 40 mm bore, 85 cm long CCT Bi-2212 dipole magnets with 17-strand, 7.8 mm wide Rutherford cables made from 0.8 mm strands."						
Alla-M4a	Two -> one. Build and test two 5 T, 80 cm long, Bi-2212 dipole magnet with 27-strand, 12 mm wide Rutherford cables.	In progress	Feb-24	Modify description to "Build and test one Bi-CCT2, a 5 T, 40-50 mm bore, 85 cm long Bi-2212 CCT dipole magnet with 12 mm wide Rutherford cables made from 1.0 mm strands." Note that only one magnet is going to be built.						
	Hybrid magnet test with a total field generation of >14.5 T at 4.2 K. Assemble and test magnets from Al-M3c and M4c inside a background field of the 120 mm, 11 T Nb $_3$ Sn magnet from the area I.	Not started	Feb-26	Modify description to "Hybrid magnet test with a total field generation of 11-15 T at 4.2 K. Assemble and test Bi-CCT1 inside the 120 mm bore, >11 T Nb $_3$ Sn magnet from the area I."						

Milestones by year and risk analysis

- · One magnet/year.
- 1m long magnets requires greater resources than previously built coils/magnets.
- Bi-CCT1 3.5 T dipole
- Bi-CCT2 5 T dipole
- Opportunities: (1) First of its own kind magnets and experiments. (2) Technology matured for significant magnet demos.
- Risks: (1) Global liquid Helium shortage. (2) Sustainable and high performance superconductor production. (3) Supply chain issues.
 (4) (In)Post-COVID tight and disrupted labor market.

NHMFL milestones

From D. Davis, U. Trociewitz, D. Larbalestier


Milestone #	Description	Target	Status *	Updated Target	Request or	Comments
Alla-M1c	Renegade OPHT facility upgrade. 1 m and 250 mm hot zone.	20-Dec	In- Progress	2022-Oct	Ulf	Commissioning under-way.
Alla-M2c	16 T Rutherford cable based solenoid development	20-Dec	In- Progress	2023-Mar	D. Davis	First coil tested and post-mortem analysis complete. Awaiting installation of commercial braiding machine for second coil winding.
Alla-M3c	20 T Rutherford cable based solenoid development	21-Jun	Not Started	2024-Jun	D. Davis	Dependent upon Alla-M2c results
Alla-M4c	25 T Rutherford cable based solenoid development	22-Jun	Not Started		D. Davis	As this would require additional external resources, I think we should refrain from putting a target date.

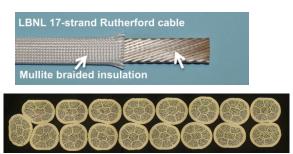
Direct braiding with pure alumina fiber, instead of inserting a cable into a mullite sleeve. Machine investigated applicable to the 9-strand Rutherford cable used for BIN5c and the babyRuth.

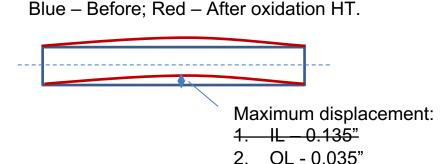
RENEGADE – a new, one of its own kind OPHT facility

	DELTECH @ NHMFL	RENEGADE @ NHMFL
Capability	50 bar OPHT	50 bar OPHT
Length of homogeneity zone (cm)	~45	~100
Diameter of the homogeneity zone (mm)	~140	250

In house LabVIEW software PID control that allows flexible temperature tuning.

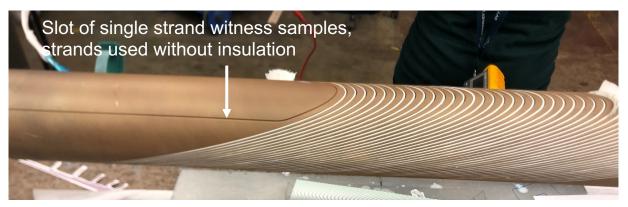
Lamar English


- Furnace received operational clearance.
- Warmed to 600C & 600 PSI. An area of the pressure vessel too hot.
 Need reinsulating.
- Fully commissioning expected in Oct 2022.



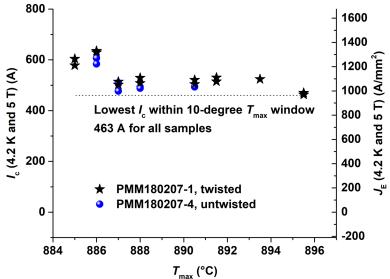
Bi-CCT1 (3.5 T (SSL 5 T) dipole, 40 mm bore) fabrication status and plan

Why: (1) Scale-up – first ~1 m long magnet, made only possible by the RENEGADE facility at FSU.
 (2) Suitable as an insert for 11T CCT6/11TSMCT. (3) A familiar cable with 0.8 mm dia, 55 x 18 wire.



Bi-CCT1 outer coil winding and conductor

Winding by Mark Krutulis



- Winding scheme (mullite sleeve + TiO₂ coating) similar to that developed for BIN5c coils.
- No electrical shorts, partly contributed by machining improvement.

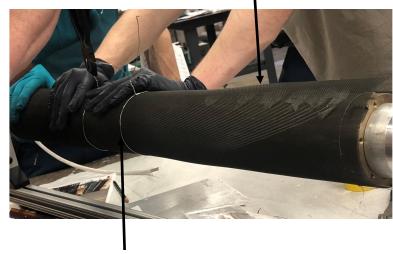
Conductors and conductor characterization

Wire	Diameter (mm)	Architecture	Length received (m)	J _E (4.2 K, 5 T) (A/mm2), 50 bar OP, peak value	4.2 K, 5 T) (A/mm2), 50 bar OP, the smallest value over 10-degree-C comments temperature window	
PMM180207-4,-5,- 6,-7	0.8	55x18	1210	1340.1	984.1	Used in cable LBNL1109

Cable No.	Cable No. Specifications		Use
LBNL 1109	17-strand subscale cable, 7.8 mm x 1.44 mm nominal	Non-twisted PMM180207_4, 5, 6 ,7	Used for Bi-CCT1_I

- Sibling wire and cable (LBNL1110) used for RC7n8, and Fermilab's SMCT coil fab.
- One sample is being prepared for Twente Transverse Pressure
 Measurement (Ulf Trociewitz NHMFL and Anna Kario Twente)
- Wire performance is on par with that used for BIN5c1.

Jiangyi Jiang, NHMFL



Bi-CCT1 outer coil winding – Inconel mesh mechanical support added for heat treatment


Inconel 600 wire meshes (fine wires)
Layer #1

Inconel 600 wires – for securing Inconel 600 wire meshes

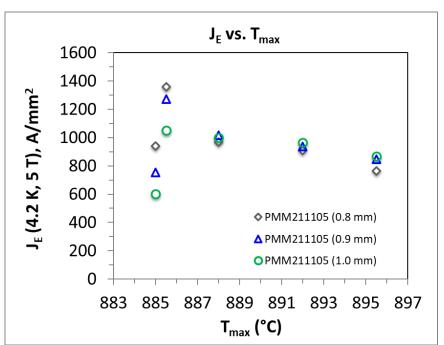
Inconel 600 wire meshes (coarse wires, 0.063" diameter)

Layer #2

Inconel 600 wires – for securing Inconel 600 wire meshes

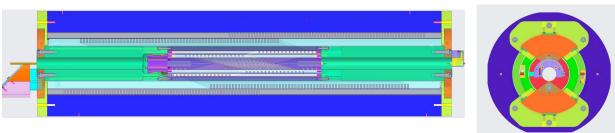
Bi-CCT1_OL1 reaction assembly

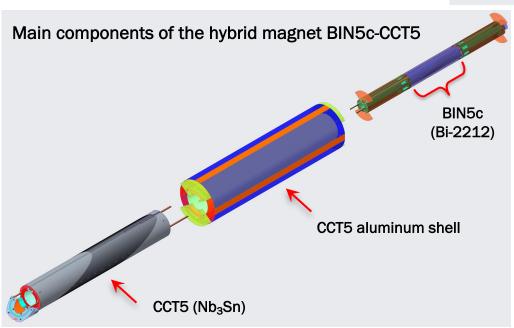
Inconel
meshes for
the dummy
mandrel
for testing the
effectiveness
of the
mechanical
support.


Shipped to NHMFL in May.

Bi-CCT2 (5 T (SSL 6.4 T) dipole, 40 mm bore) fabrication status and plan

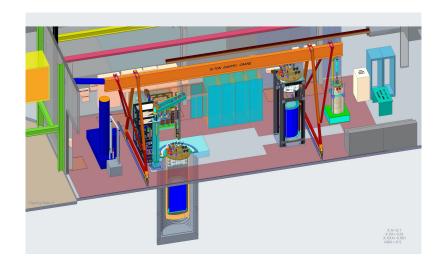
- Why: (1) Scale-up and a wider cable (10-12 mm wide) with 1.0 mm dia, 55 x 18 architecture wire. (2) Wider processing window. (3) Potentially less leakage.
- Conductor ordered and the first billet delivered. Cable to be fabricated.
- Wire performance regression: (-15% in J_c, compared to BIN5c1 wire, -21% compared to Bi-CCT1a/RC7n8 wires.)

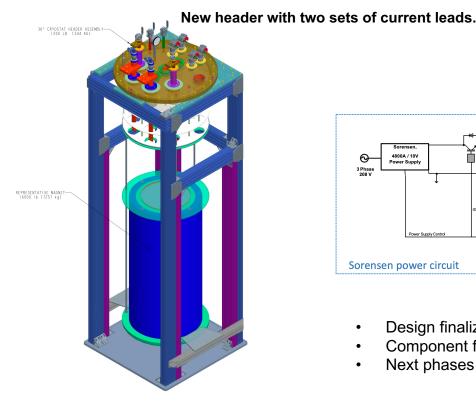

Wire	CDP/CRPD PO	Diameter (mm)	Architectur e	J _E (4.2 K, 5 T) (A/mm2), 50 bar OP, peak value	J _E (4.2 K, 5 T) (A/mm2), 50 bar OP, the smallest value over 10-degree-C temperature window
Billet in fab	7596397	1	55 x 18		
PMM211005		1	55 x 18	1053	867
PMM211005@0.8 mm	7596397	0.8	55 x 18	1360	766

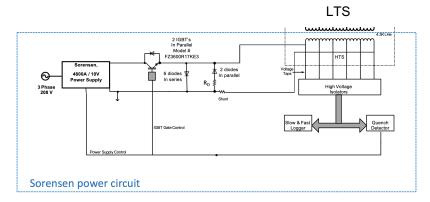


BIN5/CCT5 hybrid magnet test

Magnet assembly in consideration of structural and electrical safety.


- CCT5 magnet test.
- BIN5c magnet test.
- BIN5c coils ready. Components 50% manufactured.
- Currently, review and finalize mechanical assembly design:
- To ensure structure integrity and avoid excessive stress.
- To avoid electrical issues and bad electrical coupling between components of BIN5c magnet and those of CCT5 magnet.
- Generate assembly step-by-step document.
- Re-test of CCT5.
- Assembly after the re-test of CCT5.





BIN5/CCT5 hybrid magnet test – test facility in preparation

Challenges – Hybrid magnet test facility, and upgrade existing facilities to have hybrid magnet test capabilities (Cory Myers leads) with sufficient magnet protection capabilities.

Modify from a circuit template from Piyush Joshi, BNL

- Design finalized, drawings issued.
- Component fab in progress.
- Next phases (1) Assembly (2) Commissioning.

Summary

- We are going into a new exciting phase of Bi-2212 (CCT) magnets with new opportunities and challenges.
- Thank you for your attention and collaboration.

