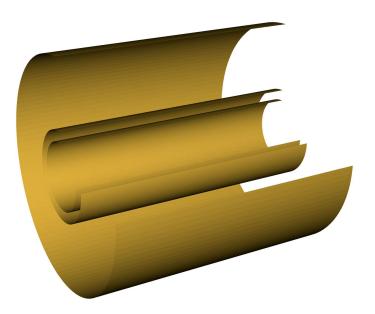
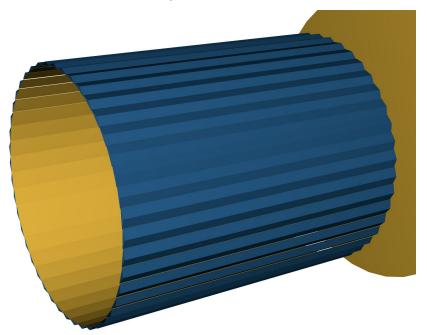

ePIC in DD4hep

Shujie Li 08.16.2022


Barrel Geometry

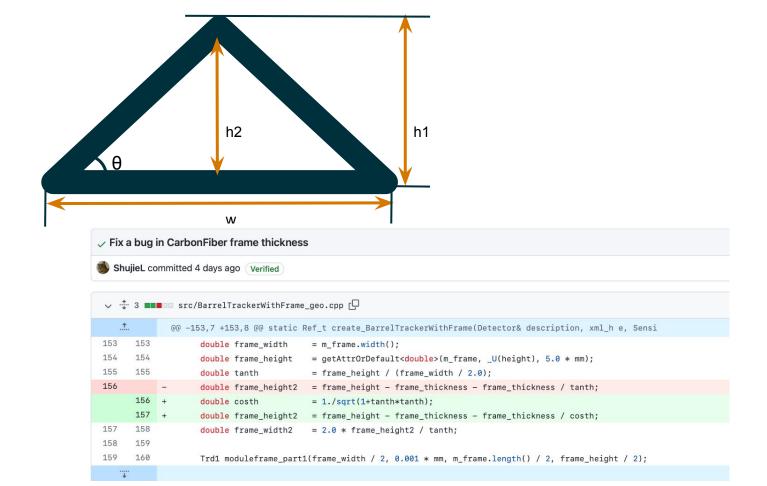
- Barrel setup from Ernst:
 - \circ 270 mm vertex layer with X/X0 \sim 0.05% at r = 36mm
 - \circ 270 mm vertex layer with X/X0 ~ 0.05% at r = 48mm
 - \circ 270 mm vertex layer with X/X0 ~ 0.05% at r = 120mm
 - \circ 540 mm sagitta layer with X/X0 \sim 0.25% at r = 270mm
 - \circ 840 mm barrel layer with X/X0 \sim 0.55% at r = 420mm
- Currently in DD4hep (implemented by Sylvester):
 - \circ 270 mm vertex layer with X/X0 \sim 0.05% at r = 36mm
 - \circ 270 mm vertex layer with X/X0 ~ 0.05% at r = 48mm
 - with carbon support (<100um)
 - \circ 270 mm vertex layer with X/X0 \sim 0.05% at r = 123mm
 - with carbon support (<100um)
 - sagitta layer with X/X0 ~ 0.35% at r = 270mm
 - staves
 - barrel layer with X/X0 ~ 0.65% at r = 420mm
 - staves

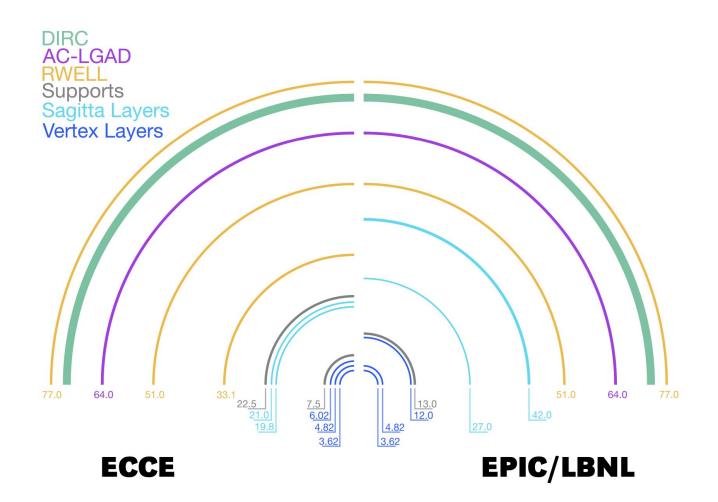

Vertex Layers

3 ITS3 silicon layers (0.04mm each) approximated with 128 staves

Sagitta Layer (temporary)

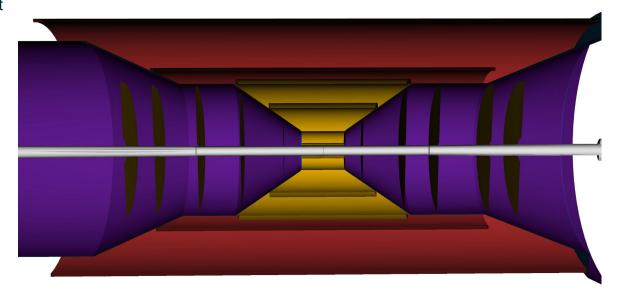
44 triangle staves (silicon + Al + carbon fiber)

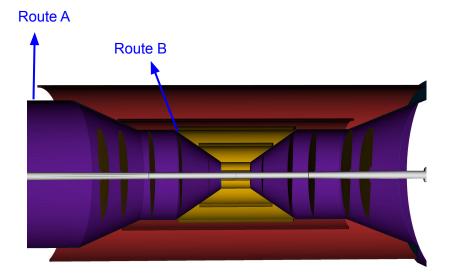


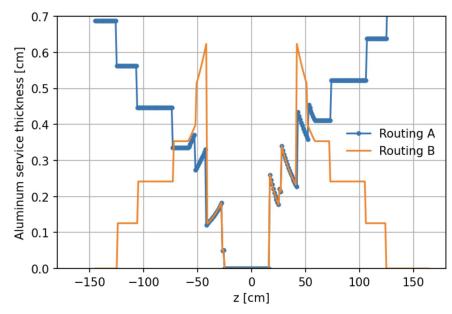

Material Scan

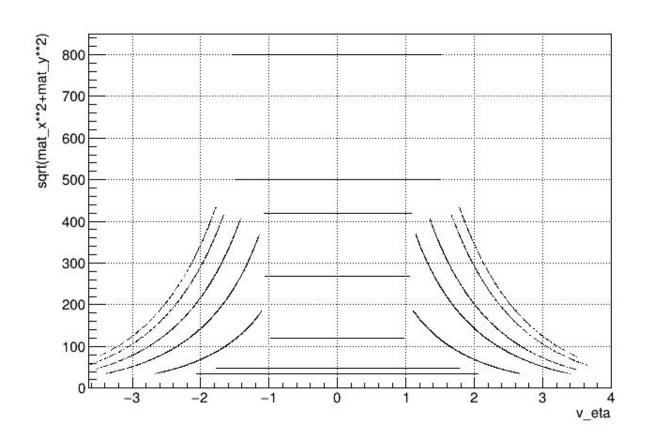
along vector (0,1,0)

\ Material	Atomic		Radiation		Path		endpoin
Num. \ Name Layer \	Number/Z Mass/A [g/mole]	Density [g/cm3]	Length [cm]	Thickness [cm]	Length [cm]	X0 [cm]	y cm,
4 Gold	79 196.967	19.32	0.3344	0.001	3.1	0.001495	3.10,
5 Beryllium	4 9.012	1.848	35.276	0.076	3.18	0.002146	3.18,
6 Air	7 14.784	0.0012	30528.8407	0.324	3.5	0.000011	3.50,
7 Air	7 14.784	0.0012	30528.8407	0.098	3.6	0.000003	3.60,
8 Silicon	14 28.085	2.33	9.3661	0.004	3.6	0.000427	3.60,
9 Air	7 14.784	0.0012	30528.8407	0.098	3.7	0.000003	3.70,
10 Air	7 14.784	0.0012	30528.8407	1	4.7	0.000033	4.70,
11 Air	7 14.784	0.0012	30528.8407	0.098	4.8	0.000003	4.80,
12 Silicon	14 28.085	2.33	9.3661	0.004	4.8	0.000427	4.80,
13 Air	7 14.784	0.0012	30528.8407	0.098	4.9	0.000003	4.90,
14 Air	7 14.784	0.0012	30528.8407	0.8	5.7	0.000027	5.70,
15 CarbonFiber	6 11.968	1.5	28.0746	0.03	5.73	0.001068	5.73,
16 Air	7 14.784	0.0012	30528.8407	6.47	12.2	0.000212	12.20,
17 Air	7 14.784	0.0012	30528.8407	0.098	12.3	0.000003	12.30,
18 Silicon	14 28.085	2.33	9.3661	0.004	12.3	0.000427	12.30,
19 Air	7 14.784	0.0012	30528.8407	0.098	12.4	0.000004	12.40,
20 Air	7 14.784	0.0012	30528.8407	0.2	12.6	0.000006	12.60,
21 CarbonFiber	6 11.968	1.5	28.0746	0.03	12.63	0.001069	12.63,
22 Air	7 14.784	0.0012	30528.8407	13.37	26	0.000438	26.00,
23 Air	7 14.784	0.0012	30528.8407	0.988	26.99	0.000032	26.99,
24 Silicon	14 28.085	2.33	9.3661	0.004	26.99	0.000428	26.99,
25 Aluminum	13 26.982	2.699	8.8963	0.02	27.01	0.002251	27.01,
26 CarbonFiber	6 11.968	1.5	28.0746	0.011	27.02	0.000374	27.02,
27 Air	7 14.784	0.0012	30528.8407	0.764	27.79	0.000025	27.79,
28 CarbonFiber	6 11.968	1.5	28.0746	0.01	27.8	0.000367	27.80,
29 Air	7 14.784	0.0012	30528.8407	0.204	28	0.000007	28.00,

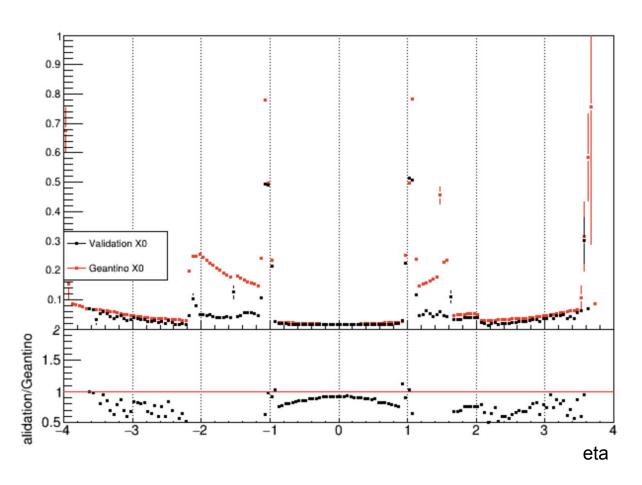

Bug fixed: stave triangle frame material thickness


Slightly updated geometry


- Remove carbon cylinder support for the second vertex layer
- Symmetric disks (5 each side)
- Recalculated service thickness
 - Aluminum
 - CarbonFiber ?
- NO uWELL, AC-LGAD


Estimation of service aluminum thickness

- cables from 3 vertex barrel layers go to +z side
- 2 outer barrel layers split evenly to +-z
 - Route A: cables exist to end of service barrel at large |z| (both sides)
 - Route B: cables exist along the cone at ~ |z|=50cm



Sensitive layers for material map

Material map test run:

