

Real and Virtual Nucleon Structure in the MARATHON Experiment

NSD Seminar

Tyler J. Hague

Relativistic Nuclear Collisions Nuclear Science Division Lawrence Berkeley National Laboratory

- 1. Tools of the Trade
- 2. The EMC Effect
- 3. The MARATHON Experiment
- 4. Results
- 5. Current Work

Tools of the Trade

Deep Inelastic Scattering

- Deep Inelastic Scatter (DIS) allows us to probe the internal structure of nucleons
- At sufficient four-momentum transfer (Q^2) , the virtual photon effectively scatters from a constituent quark

Deep Inelastic Scattering

- Deep Inelastic Scatter (DIS) allows us to probe the internal structure of nucleons
- At sufficient four-momentum transfer (Q^2), the virtual photon effectively scatters from a constituent quark

$$\frac{d^2\sigma}{d\Omega dE'}\left(E,E',\theta\right) = \frac{4\alpha^2\left(E'\right)}{Q^4}\cos^2\left(\frac{\theta}{2}\right)F_2\left[\frac{1}{\nu} + \frac{\left(1+Q^2/\nu^2\right)}{xM\left(1+R\right)}\tan^2\left(\frac{\theta}{2}\right)\right]$$

Bjorken x and the F₂ Structure Function

The Bjorken scaling variable, *x*, is the longitudinal momentum fraction of the struck quark

$$x = \frac{Q^2}{2M(E - E')}$$

*F*₂ describes the longitudinal momentum distribution of partons within the nucleon

$$F_{2}(x) \equiv \sum_{i}^{u,d,s,\ldots} x e_{i}^{2} q_{i}(x)$$

Bjorken x and the F₂ Structure Function

The Bjorken scaling variable, *x*, is the longitudinal momentum fraction of the struck quark

$$x = \frac{Q^2}{2M(E - E')}$$

F₂ describes the longitudinal momentum distribution of partons within the nucleon

$$F_2(\mathbf{x}) \equiv \sum_{i}^{u,d,s,\ldots} x e_i^2 q_i(\mathbf{x})$$

The EMC Effect

All is not well in the nucleus

History

Nuclei are a composite system of nucleons, leading to an assumption that $F_2^A \approx ZF_2^p + (A - Z)F_2^n$ with deviations at high x due to Fermi smearing

The European Muon Collaboration (*EMC*) planned to use this assumption as a luminosity check in their experiment to study the structure functions of *H*, *D*2, and *Fe*...

That doesn't seem right...

¹Aubert et al., "The ratio of the nucleon structure functions *F*2_n for iron and deuterium".

That doesn't seem right...

A luminosity issue would show up as a uniform shift up or down

¹Aubert et al., "The ratio of the nucleon structure functions $F2_n$ for iron and deuterium".

$\ref{eq:constraint} \rightarrow \ensuremath{\mathsf{The EMC effect!}}$

That doesn't seem right...

A luminosity issue would show up as a uniform shift up or down

This unexplained structural difference in nuclei became known as the EMC effect

¹Aubert et al., "The ratio of the nucleon structure functions *F*2_n for iron and deuterium".

Further Studies at SLAC²

- SLAC went to work mapping the EMC effect over a large A range
- "Strength" of the EMC effect (slope of downturn) highly correlated with A

²Gomez et al., "Measurement of the A dependence of deep-inelastic electron scattering".

Nucleon Modification

Nucleons are modified when bound in a nuclear medium!

This leads to many open questions, including

- What causes the modification?
- Is the modification flavor dependent?

³Arrington, Rubin, and Melnitchouk, "How Well Do We Know The Neutron Structure Function?"

Nucleons are modified when bound in a nuclear medium!

This leads to many open questions, including

- What causes the modification?
- Is the modification flavor dependent?

³Arrington, Rubin, and Melnitchouk, "How Well Do We Know The Neutron Structure Function?"

Nucleons are modified when bound in a nuclear medium!

This leads to many open questions, including

- What causes the modification?
- Is the modification flavor dependent?

³Arrington, Rubin, and Melnitchouk, "How Well Do We Know The Neutron Structure Function?"

The MARATHON Experiment

Mapping the A = 3 EMC Effect

A very large range of nuclei have been studied and we have learned many things, why do this experiment?

- A = 3 is the smallest system with mirror nuclei to study the difference between proton and neutron modification
- Assumed that the difference in nuclear effects of ³He and ³H is small to assess "free" nucleon structure function ratio F_2^n/F_2^p
- Free neutron structure is poorly constrained by prior data and is necessary for effective analysis of EMC data

A very large range of nuclei have been studied and we have learned many things, why do this experiment?

- A = 3 is the smallest system with mirror nuclei to study the difference between proton and neutron modification
- Assumed that the difference in nuclear effects of ³He and ³H is small to assess "free" nucleon structure function ratio F_2^n/F_2^p
- Free neutron structure is poorly constrained by prior data and is necessary for effective analysis of EMC data

A very large range of nuclei have been studied and we have learned many things, why do this experiment?

- A = 3 is the smallest system with mirror nuclei to study the difference between proton and neutron modification
- Assumed that the difference in nuclear effects of ³He and ³H is small to assess "free" nucleon structure function ratio F_2^n/F_2^n
- Free neutron structure is poorly constrained by prior data and is necessary for effective analysis of EMC data

A very large range of nuclei have been studied and we have learned many things, why do this experiment?

- \cdot A = 3 is the smallest system with mirror nuclei to study the difference between proton and neutron modification
- Assumed that the difference in nuclear effects of ³He and ³H is small to assess "free" nucleon structure function ratio F_2^n/F_2^p
- Free neutron structure is poorly constrained by prior data and is necessary for effective analysis of EMC data

F_2/F_2 Predictions as $x \to 1$					
SU(6)	Diquark	Quark	Pert.	Quark	
	/Feynman	Model/Isgur	QCD	Counting	
2/3	1/4	1/4	3/7	3/7	

ⁿ ₂ /F ^p ₂ Predictions as x –	÷	1
---	---	---

A Quick Tour of the Experiment

The CEBAF Accelerator

- The Continuous Electron Beam Accelerator Facility (CEBAF) is a racetrack accelerator at JLab
- Electrons are accelerated by \sim 1.1 GeV per LINAC with up to 5 round trips (passes)
- MARATHON ran with 5 pass beam at 10.6 GeV

- MARATHON used 4 gas targets (3 H, 2 H, H, and 3 He)
- Specially designed aluminum cell to accommodate Tritium
- Safety procedures surrounding Tritium use limit the beam current on target to 22.5µA

The Hall A High Resolution Spectrometers

The HRSs use a QQDQ magnet setup to a detector stack with tracking, PID, and calorimetry

If we assume the modification will be similar in each target, we can use a model to remove the differences

$$\frac{F_2^n}{F_2^p} = \frac{\frac{F_2^{3 \, \text{He}}}{F_2^{3 \, \text{H}}} - 2\mathcal{R}}{\mathcal{R} - \frac{F_2^{3 \, \text{He}}}{F_2^{3 \, \text{H}}}}$$

$$\mathcal{R} = \frac{\frac{F_2^{3\,\text{He}}}{2F_2^{p} + F_2^{n}}}{\frac{F_2^{3\,\text{He}}}{F_2^{p} + 2F_2^{n}}}$$

 ${\cal R}$ is the "super-ratio" of "EMC-type" ratios

These "EMC-type" ratios predict how much the nuclei differ from being a simple sum of their nucleons

If we assume the modification will be similar in each target, we can use a model to remove the differences

$$\frac{F_2^n}{F_2^p} = \frac{\frac{F_2^{3_{\rm He}}}{F_2^{3_{\rm H}}} - 2\mathcal{R}}{\mathcal{R} - \frac{F_2^{3_{\rm He}}}{F_2^{3_{\rm H}}}}$$

 $\mathcal{R} = \frac{\frac{F_{2}^{^{3}\text{He}}}{2F_{2}^{^{0}} + F_{2}^{^{n}}}}{\frac{F_{2}^{^{3}\text{H}}}{F_{2}^{^{0}} + 2F_{2}^{^{n}}}}$

 ${\cal R}$ is the "super-ratio" of "EMC-type" ratios

These "EMC-type" ratios predict how much the nuclei differ from being a simple sum of their nucleons

If we assume the modification will be similar in each target, we can use a model to remove the differences

 ${\mathcal R}$ is the "super-ratio" of "EMC-type" ratios

These "EMC-type" ratios predict how much the nuclei differ from being a simple sum of their nucleons

If we assume the modification will be similar in each target, we can use a model to remove the differences

 ${\mathcal R}$ is the "super-ratio" of "EMC-type" ratios

These "EMC-type" ratios predict how much the nuclei differ from being a simple sum of their nucleons

Results

³He/³H Ratio

F_2^n/F_2^p from ³He/³H

Is that it?

 σ_D/σ_D

The MARATHON experiment also recorded a limited set of data on Hydrogen to use the ²D/p ratio as a normalization check

⁴Abrams et al., "Measurement of the Nucleon F_2^n/F_2^p Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment".

 σ_D/σ_D

The MARATHON experiment also recorded a limited set of data on Hydrogen to use the ²D/p ratio as a normalization check

⁴Abrams et al., "Measurement of the Nucleon F_2^n/F_2^n Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment".

4

Comparing F_2^n/F_2^p

 F_2^n/F_2^p extractions from both data sets ought to agree, allowing an assessment of the normalization of the A = 3 targets

Comparing F_2^n/F_2^p

 F_2^n/F_2^p extractions from both data sets ought to agree, allowing an assessment of the normalization of the A = 3 targets

Comparing F_2^n/F_2^p

 F_2^n/F_2^p extractions from both data sets ought to agree, allowing an assessment of the normalization of the A = 3 targets

Results

⁵Abrams et al., "Measurement of the Nucleon F_2^n/F_2^p Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment".

Results

PRL in preparation

But wait, there's more!

Assessing Model Uncertainties

The KP model is only one super-ratio at our disposal (hyphenated models include "exotic" effects)

⁶Afnan et al., "Deep inelastic scattering from A = 3 nuclei and the neutron structure function".

Assessing Model Uncertainties

Plotting the average super-ratio and 1σ spread, we see that the KP model is on the edge of the 68% confidence interval

⁶Afnan et al., "Deep inelastic scattering from A = 3 nuclei and the neutron structure function".

Assessing Model Uncertainties

The KP model is only one super-ratio at our disposal (hyphenated models include "exotic" effects)

Plotting the average super-ratio and 1σ spread, we see that the KP model is on the edge of the 68% confidence interval

This isn't a bad thing, but it is worth noting when a result is model-dependent

⁶Afnan et al., "Deep inelastic scattering from A = 3 nuclei and the neutron structure function".

Average Super Ratio F_2^n/F_2^p Extraction

*Note that this does not include the \sim 2.8% normalization

Looking forward

We are carefully assessing the model dependence and normalization uncertainty of MARATHON

Looking forward

We are carefully assessing the model dependence and normalization uncertainty of MARATHON

The F_2^n/F_2^p extraction from A = 3 gives very different results from D/p Potential implications for off-shell Deuteron structure and neutron structure

Looking forward

We are carefully assessing the model dependence and normalization uncertainty of MARATHON

The F_2^n/F_2^p extraction from A = 3 gives very different results from D/p

Potential implications for off-shell Deuteron structure and neutron structure

Further EMC and SRC data will be recorded on a large group of nuclei very soon (the experiment begins at the end of the week)

Thank you!