

Data Needs & Capabilities at the LANL Isotope Production Facility

Jonathan Morrell, Ellen O'Brien, Etienne Vermeulen

March 1, 2023

LA-UR-23-21926

Introduction to IPF

Isotope Production Facility (IPF)

- Location: Los Alamos Neutron Science Center (LANSCE)
 - First beamline after DTL
- 100 MeV H⁺, ~250 μA (nominal)
- DOE IP production site
 - Mission: supply isotopes (not commercially available) to DOE IP
 - Complemented by BNL BLIP

Scientific Efforts

- Proton-induced reaction cross sections
- Beam energy distribution measurements
- Secondary neutron measurements
- Gamma spectroscopy method development

Science Staff - Isotope Team at LANL IPF Me, E. O'Brien, J.H. Seong, E. Vermeulen

Nuclear Data Needs for Isotope Production

Goal: maximize production of isotope X (product), while minimizing Y (impurity)

- Free Parameters:
 - Target thickness + incident energy = energy window
 - Select upstream target (or degrader) material, thickness
 - Irradiation + decay times
- Example: production of I-123 illustrates challenges

Production Planning with Curie

Open-Source Python Library

https://jtmorrell.github.io/curie/

Tools for production planning:

- Cross section libraries
- 1D Monte Carlo code (beam energy)
- Bateman equation solver


```
rx = ci.Reaction('Te-124(p,x)I-123')
rx.plot()
```

```
dc = ci.DecayChain('I-123', R=[[1E12, 8]], units='h')
dc.plot()
```

```
st = ci.Stack('iodine_example.csv', E0=100)
st.plot('C_slot')
```

compound	thickness	name
H2O	5	
Al	12	A_slot
H2O	5	
Al	12	B_slot
H2O	5	
Te	3	C_slot

Example: Producing I-123 from Te-124 (enriched)

Target 15 – 35 MeV window

- 3 mm (enriched) ¹²⁴Te target in C-slot
- 12 mm degraders (A+B)

Consider an 8 hour irradiation, with 12 hours of decay

Using TENDL-2021 XS:

I-124: 54.2 Ci

• I-123: 2.67 Ci (4.9% impurity)

compound	thickness	name
H2O	5	
Al	12	A_slot
H2O	5	
Al	12	B_slot
H2O	5	
Те	3	C_slot

The nuclear data challenge

Even for (p,2n) reaction, calculations disagree

- Yields vary by 12.3%
- Impurities vary by 18.2%

Measured data vary significantly

 Difficult to determine which experiments to believe

Broad energy range at IPF is particularly

demanding

List of Data Needs

Measurement needs:

- Energy-differential cross sections proton and (high-energy) neutron induced
 - Enriched targets
 - Rare or "challenging" materials
 - Capability to measure quickly/on-the-fly
- Fission product yields (up to 200 MeV)
 - Thorium a priority (but even W fissions)

Important Theory:

- Pre-equilibrium
- Level density
- Angular momentum distribution (isomers)
- High energy fission (Z>88)

Nuclear Data Utilities:

- Database for isotope production
 - Curated selection of IAEA/ENDF/TENDL
- Yield calculator (pref. online)
- Data quality assessment tool
 - AI/ML augmented
- Python ports/wrappers for existing tools
 - Personal experience:
 - 100% of early-career scientists know python
 - 90% use it primarily
 - 30-40% use C/C++
 - Only 10% can code in Fortran
 - Would probably prefer not to

Addressing shortcomings in nuclear data for isotope production: TREND (Tri-Lab Effort in Nuclear Data)

LBNL 88-Inch Cyclotron $E_{p,max} = 60 \text{ MeV}$

LANL IPF $E_{p,max} = 100 \text{ MeV}$

BNL BLIP $E_{p,max} = 200 \text{ MeV}$

- Collaboration to measure (p,x) reactions relevant to isotope production applications, from threshold up to 200 MeV
- Goal to measure XS for production isotope(s) + as many reaction channels as possible – anchor points, improve the modeling
- Measurements (mostly) via stacked target method

Stacked Target Method

 Simultaneous irradiation of multiple "stacks" of foils (targets, monitors, degraders)

 Cross sections measured at multiple energies: "degrading" beam (Cu/Al foils)

Absolute XS from γ-spectroscopy

Monitor foils

Target foils of interest

Multiple energy "degraders"

Michael Skulski (BNL post-doc) examines a γ-spectrum, 2021

Incident beam direction

Activation Analysis with Curie

Activation analysis performed using *curie* python library

- Peak fitting
- Production/decay correction
- Stack energy-loss calculation
- Cross section libraries (monitors)
- Convert measured production rates,
 R, to beam current, I_p, (for monitor foils) and cross sections (for target foils): R = (ρr)I_pσ

Advantages over other methods:

- Forward modeling of gamma spectra
 - Uses detector response function and list of isotopes to fit peaks
 - Advantage when isotopes are unknown
 - Automation of peak fitting

Spectrum with over 400 gamma-rays

TREND Measurements at IPF

- First TREND campaign: As(p,x), focus on ⁷²Se production (PET imaging)
 - 21 reaction channels observed in As
 - 27 data points from 30-200 MeV
 - Also measured 34 new reaction channels in (Cu,Ti) monitor foils

Ongoing work:

- Antimony, thallium and lanthanum
 - All from 200 MeV to threshold
 - Sb/Tl included prompt-gamma, secondary particle (LBNL only)

M. B. Fox, A. S. Voyles, J. T. Morrell, L. A. Bernstein, A. M. Lewis, A. J. Koning et al., Measurement and Modeling of Proton-Induced Reactions on Arsenic from 35 to 200 MeV, *Physical Review C*, 104:064615 (2021)

Developing New Capabilities: Counting Facility Upgrades

Recently upgraded IPF counting capabilities (2022)

- 2 Ortec GEM (transistor-reset) detectors
- DSPEC-PRO (2-channel)
- Concrete and lead shielding
- Calibrated counting towers (up to 75 cm)
- Dedicated counting space for IPF nuclear data experiments
 - On-site is bonus

Much of the work was ensuring safety requirements will be met

Printing a Nuclear Data Box

Need for rapid (stacked-target) measurements

- Developing 3D printed, disposable test box
- Compared to machined box:
 - Significantly reduces fabrication time + cost
 - Cheap plastic vs precision machined aluminum
 - No need for decontamination
 - Box is thrown away after experiment
 - Can have many foil experiments "lined up"
 - Customizable
 - Compartment size + degrader thickness tailored to experiment
 - Could accommodate custom samples

Machine Learning for Nuclear Data

Recent (2022) workshop on Al Applications for Isotope Production

- Why we want to use AI/ML:
 - Accelerate performance of computationally-heavy tasks
 - >100x speedup over C/C++ for parallel applications
 - Remove human bias
 - Perform global optimizations
 - Outlier rejection
 - Good for working with "noisy" data
- Where AI/ML isn't appropriate:
 - Replacing physics models
 - Work on small data sets

Recent IPF developments

- New GPU compute workstation
- Use of AI/ML for image analysis

Workforce Development

Students are a critical part of the nuclear data pipeline

Recent updates:

- Participating institution of HIPPO
- Site visit summer 2022
 - Undergrad/Grad Students
 - Taught theory and practice of isotope production
 - Poster session to showcase student projects to the public
- Always looking for students/post-docs
 - Physics, engineering, comp. sci., chemistry, math
 - Contact etienne@lanl.gov

Conclusions & Future Work

- Many nuclear data needs:
 - Cross sections, evaluations, curated data, utilities for isotope production
- Stacked target activation measurements performed for natural targets of:
 As, Sb, Tl, La (Nb, Cu & Ti products were also observed)
- Many capability improvements complete or ongoing
- Future work: improve pre-equilibrium reaction modeling, incorporate AI/ML into data evaluation procedure

This research was supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production

