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The LBNL 88-Inch Cyclotron capabilities for Isotope

Production R&D
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We can produce high-intensity, variable energy neutron beams at two

locations for spectroscopy and cross section measurements

Cave (

« Stacked target cross section
measurements for Isotope
production.

« Fast Loading Unloading
Facility for Fission Yields
(FLUFFY) system for cyclical
activation fission yield
measurements. e

« Max flux using breakup in the . A T e N, A E
cave: 10'2 n/s/cm? " i 2
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Stacked target :
measurements
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« Prompt (n,xy) data using the
Gamma Energy Neutron
Energy Spectrometer for
Inelastic Scattering
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*The 88-Inch Cyclotron: A one-stop facility for

(GENESIS) i : — electronics radiation and detector testing.
o Neutron Scintillator - M Kireeff-Covo et al.,. Measurement,
] ) . 127, (2018), p. 580-587.
characterization studies DOI: 10.1016/j.measurement.2017.10.018.
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The stacked target method allows for charged particle cross section

measurements over a range of beam energies via activation

Al Degraders
(lowers the beam energy)
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1. TIrradiate a stack of foil that includes monitor targets that where the
reaction rates are known and targets we want to determine the production

rate on and “beam degraders” which lower the beam energy.
2. Put the targets in front of the y-ray detector after the experiment to

measure the decay of the radioactive products formed during irradiation.
3. This allows the production rate of the unknown target to be determined
relative to the known targets.
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The stacked target method allows for charged particle cross section

measurements over a range of beam energies via activation

Al Degraders
(lowers the beam energy)

y-ray Monitor Foils /-%

detector I
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Foil of Interest

Beam

1. Irradiate a stack of foil that includes monitor targets that where the
reaction rates are known and targets we want to determine the production

rate on and “beam degraders” which lower the beam energy.
2. Put the targets in front of the y-ray detector after the experiment to

measure the decay of the radioactive products formed during irradiation.
3. This allows the production rate of the unknown target to be determined
relative to the known targets.
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Our work as a part of the TREND collaboration suggests that

significant changes are needed to accurately model high-energy

(p,Xx) 1sotope production
23 excitation functions for >3Nb(p,x)
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What are the effects of these changes on the neutron flux look

like behind a thick target at BNL-BLIP or LANL-IPF?
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There 1s a sizable neutron flux behind all thick target
stacks at these Isotope Production facilities
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We’ve also quantified neutron production from thick target deuteron

breakup using both Time-of-Flight* and foil activation

Double Time-of-Flight*

« Neutrons scatter off a target
cell neutron scintillator and
into an array of scatter cells
allowing for energy
determination down to =0.5
MeV without contributions
from temporally adjacent
beam pulses.

Time-of-Flight (TOF) Mounted Foil Holder

-

4000 F
3500 £

A dTOF - In Foil
* dTOF - Al Foll

“K.P. Harrig et al., Nuclear Inst. and
Methods in Physics Research, A 877

(2018) 359-366 S ot ﬁ&i
Foil Activation 2 2000 £ BEAYYY T

o E &
£ 1500 - B M

o Arrays of activation foils are | = 1o
located at defined angles e r SO
with respect to the breakup D Neneem e
target and the spectrum is
determined via spectral
decomposition.

Our goal was the development of a physics-based
model of deuteron breakup
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Jon Morrell developed a combined 5 parameter model™ that describes

the double-differential neutron production cross section

. 1lelO

e Breakup cross section from © ——
] . 35 - * Eq=16MeV
Kalbach! parameterization 1o | » Eg=33Mev
o 20 o Es=40MeV
e P(E,), P(6) from R. Serber? 0 o ] : Eomsobev
E. 1 - == Eq=10MeV
(Phys. Rev. 72, 11 (1947) S 20 -~ Ej=15MeV
. < ] -== Eq=20MeV
e Evaporation component from == - Eg=25MeV
T 10 | E4=30MeV
Talys (Maxwell-Boltzmann) - ;z | ey
e One flat background parameter . _ Mo A il
e Fit yields to literature data’* o 1 20 30 4 50

E, (MeV)

3Meulders (1975) - 16, 33, 50 MeV

d*o(eq)
T 4Saltmarsh (1977) - 40 MeV

dQUdE,

1 width parameter each

de Shape & Magnitude

dy—1

Y(E,, Es,Q) =n / / deqdf)

(Ens Ea, deE dx )

IC. Kalbach Phys Rev. C 95, 014606 (2017). 2R. Serber, Phys. Rev 72, 11 (1947) Jon Morrell

Vs *Acc for publication in Physical
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We benchmarked the model for 40 MeV deuterons on a thick

Be breakup target using activation and time-of-flight
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We use these neutrons to measure (n,xny) using the Gamma Energy

Neutron Energy Spectrometer for Inelastic Scattering (GENESIS)
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Cave S GENESIS
Measurement Setup
Berkeley Lab

GENESIS experiments have been
performed on *°Fe, 233U and NaCl
for fast reactor modeling and Al,O;
for neutron active interrogation
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>Fe GENESIS data (2*— 0 (847 keV) ratio
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Gamma-rays up to 10 MeV measured Majority of neutrons have £, <4 MeV, which is
for incident £, from 10 keV to 20 MeV  consistent with significant compound emission

GENESIS will not only produce data needed for active
interrogation but will also lead to improved shielding
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In Cave 0 we can also perform cyclical neutron

irradiations and measure activities with ¢,, > 0.5 s

* The Fast Loading User Facility for
Fission Yields (FLUFFY) has been
developed at LBNL to rapidly shuttle
actinide samples between a neutron
source and counting array.

* Transport times: <1 s

e Flux: 8.3 x 10% n/cm?/s

Cave 02 |:|
* This high flux along e s 6
with the rapid transport \
time allows for the

observation of 80+% of .. .
the yield in peak mass ‘K‘ N

chains.
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In Cave 4C we can perform in-beam (p,xn+y)

measurements for Isotope Production

88-Inch Cyclotron
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In Cave 4C we can mount in-beam neutron-gamma
coincident measurements using elements of GENESIS

!!li | Neutron Detectors /|

T r—

Our first experiment 1n
August 2022 focused on
natT](p,x)?2¢Pb (t,,=52.5 ky)

which 1s hard — impossible ’5
to measure via activation
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* The 88-Inch cyclotron provides a broad range of light-ion and
neutron beams that can be used to address outstanding nuclear
data needs for 1sotope production, nonproliferation, stopping
power measurements and space effects testing including;:

» Stacked target charged particle activation technique;

* (n,xny) cross section measurements using GENESIS;

* Cyclical neutron 1rradiation for fission yield using FLUFFY;
* In-beam (p,xny) coincident measurements (Cave 4C), and

* Charged-particle stopping power measurements (not shown)

* Qur research shows that significant changes are needed to
reaction modeling to ensure that accelerator-driven isotope
production 1s optimized for both yield and purity.
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