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The LBNL 88-Inch Cyclotron capabilities for Isotope 
Production R&D
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We can produce high-intensity, variable energy neutron beams at two 
locations for spectroscopy and cross section measurements  
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● Stacked target cross section 

measurements for Isotope 
production.

● Fast Loading Unloading 
Facility for Fission Yields 
(FLUFFY) system for cyclical 
activation fission yield 
measurements.

● Max flux using breakup in the 
cave: 1012 n/s/cm2

Cave 5
● Prompt (n,xg) data using the 

Gamma Energy Neutron 
Energy Spectrometer for 
Inelastic Scattering 
(GENESIS).

● Neutron Scintillator 
characterization studies 

*The 88-Inch Cyclotron: A one-stop facility for 
electronics radiation and detector testing.  
M.Kireeff-Covo et al.,.  Measurement, 
127, (2018), p. 580-587. 
DOI: 10.1016/j.measurement.2017.10.018.

Josh
Brown

FLUFFY

Stacked target 
measurements

https://doi.org/10.1016/j.measurement.2017.10.018


4 4Bernstein WANDA 2023 Facilities Talk

The stacked target method allows for charged particle cross section 
measurements over a range of beam energies via activation

Beam

Al Degraders 
(lowers the beam energy)

Foil of Interest

Monitor Foils

* Patent submitted (LBNL/UC)

g-ray 
detector

1. Irradiate a stack of foil that includes monitor targets that where the 
reaction rates are known and targets we want to determine the production 
rate on and “beam degraders” which lower the beam energy.

2. Put the targets in front of the g-ray detector after the experiment to 
measure the decay of the radioactive products formed during irradiation.  

3. This allows the production rate of the unknown target to be determined 
relative to the known targets.
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Our work as a part of the TREND collaboration suggests that 
significant changes are needed to accurately model high-energy 

(p,x) isotope production

Experiments have been performed on Nb, As, Sb 
and Tl using proton beams up to 55 MeV at LBNL
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Our work as a part of the TREND collaboration suggests that 
significant changes are needed to accurately model high-energy 

(p,x) isotope production

Experiments have been performed on Nb, As, Sb 
and Tl using proton beams up to 55 MeV at LBNL
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What are the effects of these changes on the neutron flux look 
like behind a thick target at BNL-BLIP or LANL-IPF?

There is a sizable neutron flux behind all thick target 
stacks at these Isotope Production facilities
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θ

We’ve also quantified neutron production from thick target deuteron 
breakup using both Time-of-Flight* and foil activation 

Mounted Foil Holder

*K.P. Harrig et al.,  Nuclear Inst. and 
Methods in Physics Research, A 877 
(2018) 359–366

Our goal was the development of a physics-based 
model of deuteron breakup

Time-of-Flight (TOF)Double Time-of-Flight*
● Neutrons scatter off a target 

cell neutron scintillator and 
into an array of scatter cells 
allowing for energy 
determination down to ≈0.5 
MeV without contributions 
from temporally adjacent 
beam pulses. 

Foil Activation
● Arrays of activation foils are 

located at defined angles 
with respect to the breakup 
target and the spectrum is 
determined via spectral 
decomposition.
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Jon Morrell developed a combined 5 parameter model* that describes 
the double-differential neutron production cross section

3Meulders (1975) - 16, 33, 50 MeV
4Saltmarsh (1977) - 40 MeV

Shape & Magnitude
1 width parameter each

1C. Kalbach Phys. Rev. C 95, 014606 (2017).  2R. Serber, Phys. Rev 72, 11 (1947)

● Breakup cross section from 
Kalbach1 parameterization

● P(En), P(𝛳) from R. Serber2

(Phys. Rev. 72, 11 (1947)
● Evaporation component from 

Talys (Maxwell-Boltzmann)
● One flat background parameter
● Fit yields to literature data3,4

Jon Morrell
*Accepted for publication in Physical 

Review C, February 2023
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We benchmarked the model for 40 MeV deuterons on a thick 
Be breakup target using activation and time-of-flight
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GENESIS experiments have been 
performed on 56Fe, 238U and NaCl 

for fast reactor modeling and Al2O3 
for neutron active interrogation

We use these neutrons to measure (n,xng) using the Gamma Energy 
Neutron Energy Spectrometer for Inelastic Scattering (GENESIS)
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56Fe GENESIS data ( 2+→ 0+ (847 keV) ratio

Nn(En,qn) gated on the 
847 keV 2!" → 0!"

Majority of neutrons have En ≤ 4 MeV, which is 
consistent with significant compound emission

GENESIS will not only produce data needed for active 
interrogation but will also lead to improved shielding

J.M. Gordon

Ng(Eg)
gated on prompt neutrons

Gamma-rays up to 10 MeV measured 
for incident En from 10 keV to 20 MeV
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In Cave 0 we can also perform cyclical neutron 
irradiations and measure activities with t½ > 0.5 s

• The Fast Loading User Facility for 
Fission Yields (FLUFFY) has been 
developed at LBNL to rapidly shuttle 
actinide samples between a neutron 
source and counting array. 
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• Transport times: <1 s

• Flux: 8.3 x 108 n/cm2/s

• This high flux along 
with the rapid transport 
time allows for the 
observation of 80+% of 
the yield in peak mass 
chains.

E.F. Matthews
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In Cave 4C we can perform in-beam (p,xn+g) 
measurements for Isotope Production
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In Cave 4C we can mount in-beam neutron-gamma 
coincident measurements using elements of GENESIS

16

Neutron Detectors

HPGe Detectors

Target 
(in vacuum) Beam

Our first experiment in 
August 2022 focused on 

natTl(p,x)202gPb (t½=52.5 ky)  
which is hard → impossible 

to measure via activation
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Summary
• The 88-Inch cyclotron provides a broad range of light-ion and 

neutron beams that can be used to address outstanding nuclear 
data needs for isotope production, nonproliferation, stopping 
power measurements and space effects testing including:

• Stacked target charged particle activation technique;
• (n,xng) cross section measurements using GENESIS;
• Cyclical neutron irradiation for fission yield using FLUFFY;
• In-beam (p,xng) coincident measurements (Cave 4C), and
• Charged-particle stopping power measurements (not shown)

• Our research shows that significant changes are needed to 
reaction modeling to ensure that accelerator-driven isotope 
production is optimized for both yield and purity.
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Thank You!

This research was supported by the Isotope Program within the U.S. Department of Energy’s Office of Science, carried out 
under Lawrence Berkeley National Laboratory (Contract No. DE-AC02-05CH11231), Los Alamos National Laboratory 

(Contract No. 89233218CNA000001) and Brookhaven National Laboratory (Contract No. DEAC02-98CH10886)
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