Impact of Advanced Computing Architectures on
Nuclear Data Needs

Paul K. Romano
Computational Scientist, Argonne National Laboratory

Workshop for Applied Nuclear Data Activities (WANDA 2023)
March 1, 2023

Argonne &

NATIONAL LABORATORY

My Background

> Joint appointment in Computational Science (CPS) and Nuclear Science and
Engineering (NSE) divisions at ANL

> Focus area lead for computational particle transport: multiphysics, reactor
design/analysis, fusion neutronics, high-energy physics, and nuclear data

> Nuclear data tie-in: Project lead for the OpenMC Monte Carlo code

> Computing tie-in: Working under Exascale Computing Project on porting
high-fidelity coupled neutronics (OpenMC) and CFD (Nek5000)

Computing Architectures

>

>

>

While the outlook on next-generation architectures was unclear 5-10 years
ago, we are now very clearly living in the age of GPUs, aided in the US by the
efforts under the Exascale Computing Project

7 of the current top 10 supercomputers are based on GPUs

o Applications that are not able to take advantage of GPUs are missing out on most of the
performance potential

While use of GPUs for scientific simulation has been driven by large
machines, benefits filter down to smaller GPU-based systems as well

OpenMC Performance: CPU vs GPU

aOpenMC OpenMC Performance by Year:

Dual Socket CPU vs. Single GPU

Intel Ponte
1,000 Vecchio (PVC)

900
< 800
%
» 700
Q@
Q
t 600
©
Q
=, 500
8
c 400
@©
€
o 300
5
& 200 2x E5-2699v3 2x E5-2699 v4

(36 cores) (44 cores) 2x AMD 7742
100 — v = v (128 cores)
) P100 2x 8180M (56 cores)
2012 2014 2016 2018 2020 2022
Year
-CPU -e-GPU

EXASCALE 1 4

e
Argon ne @ Inactive batch performance on HM-Large reactor w/depleted fuel E\(\g\ﬂ: SRS

NATIONAL LABORATORY

What have we learned?

> Programming for GPUs is not easy: managing multiple memory spaces,
Immature programming models, immature tools, immature hardware,
debugging/performance, lack of virtual tables (polymorphism)

> GPUs are inherently not well-suited for Monte Carlo (heavy branching logic,

random memory access)
o However, CPUs are equally bad!

> With respect to nuclear data, the primary practical difficulty is the use of
complex, nested data hierarchies

Data hierarchy: polymorphism

AngleEnergy

+from_ace()
+from_endf()
+from _hdf5()

+to_hdf5()

NBodyPhaseSpace

KalbachMann

CorrelatedAngleEnergy

UncorrelatedAngleEnergy

+total_mass: double
+n_particles: int
+atomic_weight_ratio: doublg

+energy: double[]
+energy_out: Univariate[]
+precompound: FunctionlD[]

+energy: double[]
+energy_out: Univariate[]
+mu: Univariate[][]

+angle: AngleDistribution
+energy: EnergyDistribution

+from_hdf5()

+q_value: double +slope: FunctionlD[] +from ace() +to hdf5()
+from_hdf5() +from_ace() +from_endf()
+to_hdf5() +from _endf() +from_hdf5() AngleDistribution
::;0’;&2?,{?() +to_hdf5() EnergyDistribution +energy: double[]
= +from endf() 1 1 [+distribution: Univariatel[]|
+from_hdf5() +from ace()
+to_hdf5() +from_endf()
+from_hdf5()
+to_hdf5()
ArbitraryTabulated Levellnelastic GeneralEvaporation| |MaxwellEnergy Evaporation WattEnergy MadlandNix
+energy: double[] +threshold: double +theta: FunctionlD +theta: FunctionlD +theta: FunctionlD +a: FunctionlD +efl: double
+energy out: Univariate[]l |+mass ratio: double| |+g: FunctionlD +u: double +u: double +b: FunctionlD +efh: double
+u: double +U: double +tm: FunctionlD

+from_ace()
+from_endf ()
+from_hdf5()
+to_hdf5()

+from_ace()
+from_hdf5()
+to _hdf5()

+from_ace()
+from _endf()
+from_hdf5()
+to_hdf5()

+from_ace()
+from_endf ()
+from_hdf5()
+to_hdf5()

+from_ace()
+from_endf()
+from_hdf5()

+to hdf5()

+from_ace()
+from _endf()
+from_hdf5()
+to_hdf5()

+from_endf()
+from_hdf5()
+to_hdf5()

Data hierarchy: flattened classes

> Normally, nested classes handled by “pointer chasing”
> 0On GPUs, all data ends up being flattened into single opaque array
> Virtual tables replaced by switch statements

UncorrelatedAngleEnergy

AngleDistribution EnergyDistribution
doublel] Univariate Function1D FunctionlD | double
O = type tag

O = data

Data hierarchy: “better” solutions

> Just wait? — compiler vendors and programming models may eventually
handle runtime polymorphism

> Nuclear data processing codes could provide “uniform” outputs
o Simplifies end use at cost of higher memory

> Move virtual dispatch to the host, finer-grained GPU kernels (Celeritas)

> Machine learning models could provide parameterized forms of
distributions?

https://github.com/celeritas-project/celeritas

Other future directions

> On GPUs and other data-parallel architectures, strong incentive to use less
memory and more FLOPs

> Model-based physics is attractive for Monte Carlo transport simulations

o For example, windowed multipole data for resolved resonance range
o Fission event generators (FREYA, CGMF, GEF, etc.)
o ldeally, better physics and better performance

> Integration of libraries in GPU-enabled code adds more complexity

Thank you!

10

