
Impact of Advanced Computing Architectures on
Nuclear Data Needs

Paul K. Romano
Computational Scientist, Argonne National Laboratory

Workshop for Applied Nuclear Data Activities (WANDA 2023)
March 1, 2023



➤ Joint appointment in Computational Science (CPS) and Nuclear Science and 
Engineering (NSE) divisions at ANL

➤ Focus area lead for computational particle transport: multiphysics, reactor 
design/analysis, fusion neutronics, high-energy physics, and nuclear data

➤ Nuclear data tie-in: Project lead for the OpenMC Monte Carlo code

➤ Computing tie-in: Working under Exascale Computing Project on porting 
high-fidelity coupled neutronics (OpenMC) and CFD (Nek5000)

My Background

2



Computing Architectures

➤ While the outlook on next-generation architectures was unclear 5–10 years 
ago, we are now very clearly living in the age of GPUs, aided in the US by the 
efforts under the Exascale Computing Project

➤ 7 of the current top 10 supercomputers are based on GPUs
○ Applications that are not able to take advantage of GPUs are missing out on most of the 

performance potential

➤ While use of GPUs for scientific simulation has been driven by large 
machines, benefits filter down to smaller GPU-based systems as well

3



OpenMC Performance: CPU vs GPU

4



What have we learned?

➤ Programming for GPUs is not easy: managing multiple memory spaces, 
immature programming models, immature tools, immature hardware, 
debugging/performance, lack of virtual tables (polymorphism)

➤ GPUs are inherently not well-suited for Monte Carlo (heavy branching logic, 
random memory access)
○ However, CPUs are equally bad!

➤ With respect to nuclear data, the primary practical difficulty is the use of 
complex, nested data hierarchies

5



Data hierarchy: polymorphism

6



➤ Normally, nested classes handled by “pointer chasing”
➤ On GPUs, all data ends up being flattened into single opaque array
➤ Virtual tables replaced by switch statements

Data hierarchy: flattened classes

7



Data hierarchy: “better” solutions

➤ Just wait? — compiler vendors and programming models may eventually 
handle runtime polymorphism

➤ Nuclear data processing codes could provide “uniform” outputs
○ Simplifies end use at cost of higher memory

➤ Move virtual dispatch to the host, finer-grained GPU kernels (Celeritas)

➤ Machine learning models could provide parameterized forms of 
distributions?

8

https://github.com/celeritas-project/celeritas


Other future directions

➤ On GPUs and other data-parallel architectures, strong incentive to use less 
memory and more FLOPs

➤ Model-based physics is attractive for Monte Carlo transport simulations
○ For example, windowed multipole data for resolved resonance range
○ Fission event generators (FREYA, CGMF, GEF, etc.)
○ Ideally, better physics and better performance

➤ Integration of libraries in GPU-enabled code adds more complexity

9



Thank you!

10


