Fission Product Yield Measurements at TUNL

Dr. Matthew E. Gooden

02/28/2023

LA-UR-#######
OUTLINE

• MOTIVATION
• ‘LONG’-LIVED YIELDS
• ‘SHORT’-LIVED YIELDS
• RABITTS
MOTIVATION

• Majority of fission yield measurements have been performed with reactors (thermal) and with critical assemblies (fission)
• 14 MeV neutron sources from DT fusion are also common and numerous measurements exist for this energy

If we consider the fission product ^{147}Nd from $^{239}\text{Pu}(n,f)$ what do we see?
• An energy dependent trend with increasing neutron energy
• But .. Is this an artifact or real physics?
Denis source
FN TANDEM 10MV

2H gas

Dual fission chamber n-detector

2H gas
From accelerator

3H(p,n)3He; Monoenergetic neutrons: 0.5 – 7.7 MeV
2H(d,n)3He; Monoenergetic neutrons: 4.0 – 7.7 MeV
3H(d,n)4He; Monoenergetic neutrons: 14.8 – 20.5 MeV
Fission Chambers

To measure the fission yield, we need to know how many fissions happened — *Fission Chambers*

- 3 Chambers were constructed: 1 for each target isotope
 - \(^{235}\text{U}\): \(\sim 100 \mu\text{g/cm}^2\) ref. / 200 mg/cm\(^2\) target
 - \(^{238}\text{U}\): \(\sim 100 \mu\text{g/cm}^2\) ref. / 400 mg/cm\(^2\) target
 - \(^{239}\text{Pu}\): \(\sim 10 \mu\text{g/cm}^2\) ref. / 200 mg/cm\(^2\) target

The number of fissions in the target is determined by scaling

\[\text{Total Fissions} = \text{Counts} \times \frac{M_T}{M_R} \]

- No fission cross section needed!
Experiment Summary:

- The experiments have been broken down into 3 time scales and 11 Energies:
- Energies: 0.5, 1.4, 2.4, 3.6, 4.6, 5.5, 6.5, 7.5, 9, 11 and 14 MeV
 - **Long**: cumulative yields of long lived (days-months) fission products; i.e. near stability
 - Requires irradiations of a few days to a week+
The experiments have been broken down into **3 time scales** and **11 Energies**:

- **Long**: cumulative yields of long lived (days-months) fission products; i.e. near stability
 - Requires irradiations of a few days to a week+

- **Short**: cumulative yields of short(er) lived fission products (10’s of minutes to hours)
 - Irradiations for 1-2 hours
 - Analog sample transfer system -> LLNL Colleague runs sample to counters
 - So called *Jack Rabbit* measurements

Experiment Summary:
Experiment Summary:

RABITTS: RApid Belt-driven Irradiated Target Transfer System

Irradiation & Counting Cycles

<table>
<thead>
<tr>
<th>Time</th>
<th>Counting Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 s</td>
<td>20 s</td>
</tr>
<tr>
<td>10 s</td>
<td>60 s</td>
</tr>
<tr>
<td>60 s</td>
<td>300 s</td>
</tr>
</tbody>
</table>

Target Position Reproducibility: 42 µm

Transit Time: 1 s
RESULTS
For 147Nd, we have demonstrated a positive energy dependence to its cumulative fission yield, in agreement with data from other sources.

- **TUNL**: 5.8%/MeV

 \[1.950 + 0.113E \]

- **Chadwick**: 4.7%/MeV

 \[1.950 + 0.091E \]
We have addressed the question of energy dependence in the low-energy region, added data between 2-14 MeV and have helped address the discrepant data near 14 MeV.
From whole foil gamma counting we have found yields for ~15 fission products
- Small sample of all yields
- No valley products
- Reasonably good agreement with England & Rider
 - E&R for some yields can have very large uncertainty: >50%
 - New data will help to reduce this
Short Activations (JR):

$E_n = 9.0$ MeV

Cumulative Yield %

$E_n = 4.6$ MeV

Cumulative Yield %

Fission Product

Los Alamos National Laboratory
Summary: Our Coverage on the Nuclear Chart

Completed: Long Irradiation
16 FPYs @ 11 energies

Measured: jackRabbit
46 FPYs @ 6 energies

Measured: RABITTS
60 FPYs @ 5 energies
Collaboration

Joint collaboration between LANL, LLNL and TUNL:

LANL
Matthew E. Gooden
Todd A. Bredeweg
Evelyn Bond
David Vieira
Jerry Wilhelmy
Vanessa Linero

LLNL
Ron Malone
Anthony Ramirez
Jack Silano
Mark Stoyer
Anton Tonchev

TUNL
Sean Finch
Calvin Howell
Werner Tornow
THANK YOU