

Delivering science and technology to protect our nation and promote world stability

Fission Product Yield Measurements at TUNL

Dr. Matthew E. Gooden

02/28/2023

LA-UR-#########

OUTLINE

- MOTIVATION
- 'LONG'-LIVED YIELDS
- 'SHORT'-LIVED YIELDS
- RABITTS

MOTIVATION

- If we consider the fission product ¹⁴⁷Nd from ²³⁹Pu(n,f) what do we see?
 - An energy dependent trend with increasing neutron energy
 - But .. Is this an artifact or real physics?

- Majority of fission yield measurements have been performed with reactors (thermal) and with critical assemblies (fission)
- 14 MeV neutron sources from DT fusion are also common and numerous measurements exist for this energy

Triangle Universities Nuclear Lab

 7 Li(p,n) 7 Be; Monoenergetic neutrons: 0.1 – 0.65 MeV 3 H(p,n) 3 He; Monoenergetic neutrons: 0.5 – 7.7 MeV 2 H(d,n) 3 He; Monoenergetic neutrons: 4.0 – 7.7 MeV 3 H(d,n) 4 He; Monoenergetic neutrons: 14.8 – 20.5 MeV

Fission Chambers

2.267

Sh

- 3 Chambers were constructed: 1 for each target isotope
 - ²³⁵U: ~ 100 μg/cm² ref. / 200 mg/cm² target
 - ²³⁸U: ~ 100 μg/cm² ref. / 400 mg/cm² target
 - ²³⁹Pu: ~ 10 μg/cm² ref. / 200 mg/cm² target

The number of fissions in the target is determined by scaling

Total Fissions = Counts $* M_T/M_R$

No fission cross section needed!

Experiment Summary:

- The experiments have been broken down into <u>3 time scales</u> and <u>11 Energies</u>:
- Energies: 0.5, 1.4, 2.4, 3.6, 4.6, 5.5, 6.5, 7.5, 9, 11 and 14 MeV
 - Long: cumulative yields of long lived (days-months) fission products; i.e. near stability
 - Requires irradiations of a few days to a week+

Experiment Summary:

- The experiments have been broken down into <u>3 time scales</u> and <u>11 Energies</u>:
- Energies: 0.5, 1.4, 2.4, 3.6, 4.6, 5.5, 6.5, 7.5, 9, 11 and 14 MeV
 - Long: cumulative yields of long lived (days-months) fission products; i.e. near stability
 - Requires irradiations of a few days to a week+
 - Short: cumulative yields of short(er) lived fission products (10's of minutes to hours)
 - Irradiations for 1-2 hours
 - Analog sample transfer system -> LLNL Colleague <u>runs</u> sample to counters
 - So called Jack Rabbit measurements

Experiment Summary:

RABITTS: RApid Belt-driven Irradiated Target Transfer System

Irradiation & Counting Cycles

¹⁴⁷Nd:

We have addressed the question of energy dependence in the low-energy region, added data between 2-14 MeV and have helped address the discrepant data near 14 MeV.

Comparison to England & Rider:

- From whole foil gamma counting we have found yields for ~15 fission products
 - Small sample of all yields
- No valley products
- Reasonably good agreement with England & Rider
 - E&R for some yields can have very large uncertainty: >50%
 - New data will help to reduce this

Short Activations (JR):

Summary: Our Coverage on the Nuclear Chart

Collaboration

Joint collaboration between LANL, LLNL and TUNL:

LANL

Matthew E. Gooden Todd A. Bredeweg Evelyn Bond David Vieira Jerry Wilhelmy Vanessa Linero

<u>LLNL</u>

Ron Malone Anthony Ramirez Jack Silano Mark Stoyer Anton Tonchev

<u>TUNL</u>

Sean Finch Calvin Howell Werner Tornow

THANK YOU

