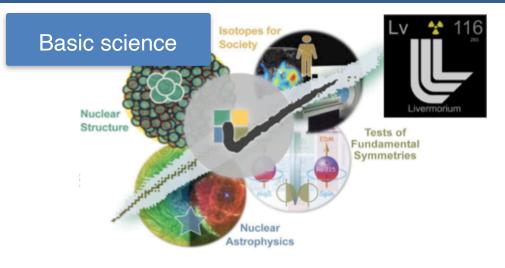
Impact and needs of precision decay data for determining fission yields

FPY beta-gamma branching ratios

Workshop for Applied Nuclear Data Activities (WANDA)

Kay Kolos

Lawrence Livermore National Laboratory


LLNL-PRES-846016 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Fission-product decay data is a cross-cutting need for multiple application spaces in nuclear science

Nuclear fission and β decay

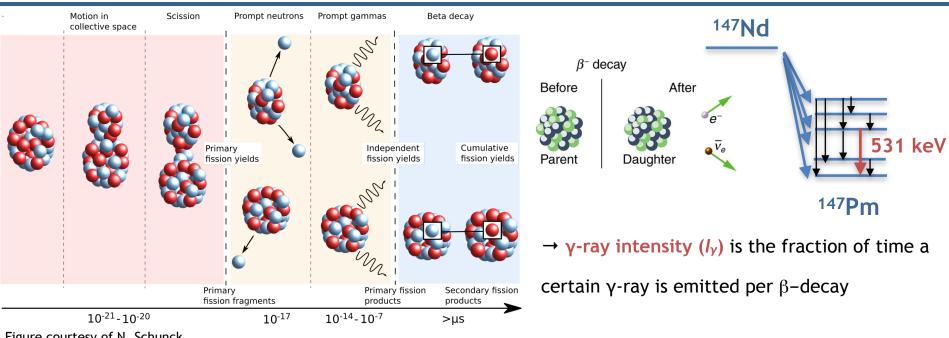
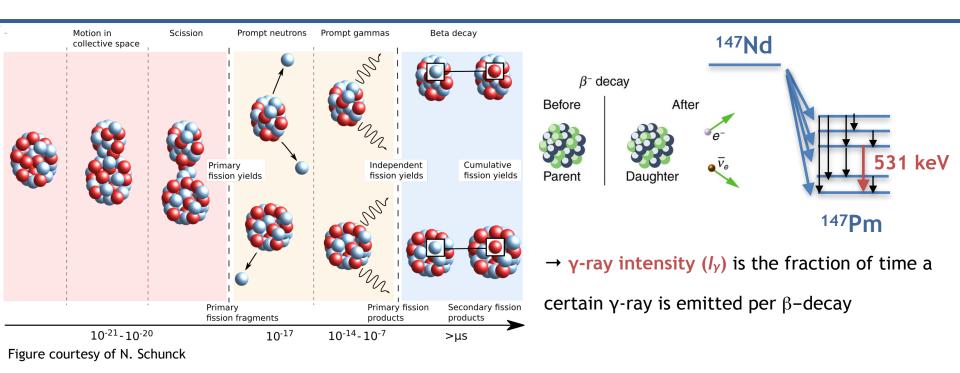
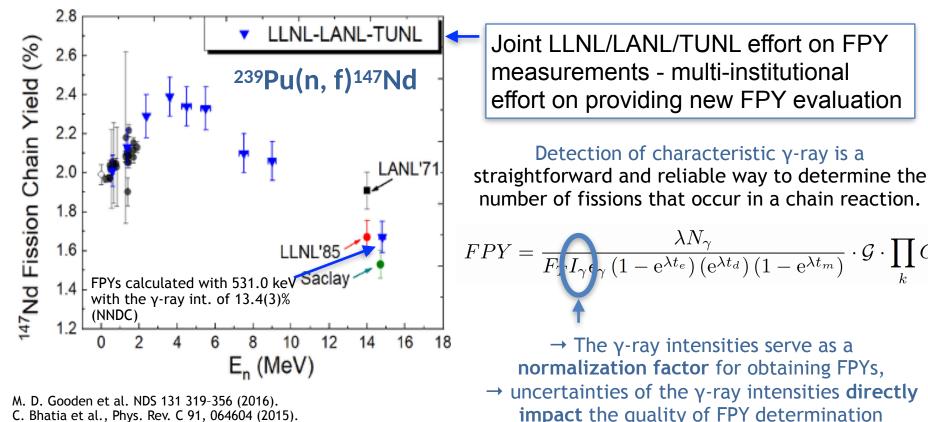



Figure courtesy of N. Schunck

Lawrence Livermore National Laboratory LLNL-PRES-846016

Nuclear fission and β decay



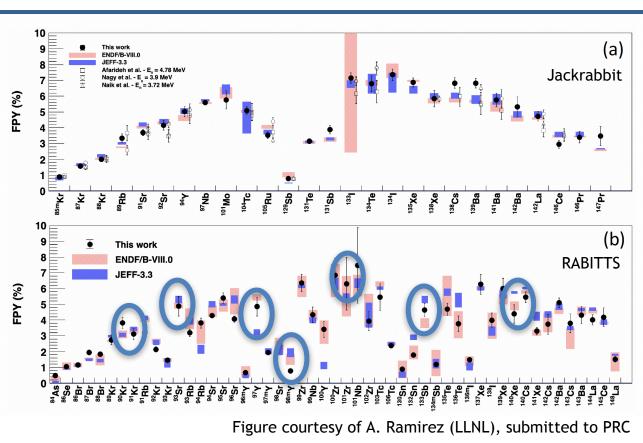
Detailed information on the decay properties and γ -ray intensities are needed to:

- Test theory predictions models are tested when compared with measured data
- Predict prompt fission gammas since models rely on statistical and discrete decay properties
- Identify and determine fission product yields (FPYs) fission decay data is a proxy for FPY

Ongoing efforts to improve FPYs evaluations

C. Bhatia et al., Phys. Rev. C 91, 064604 (2015). LLNL POC: A. P. Tonchev

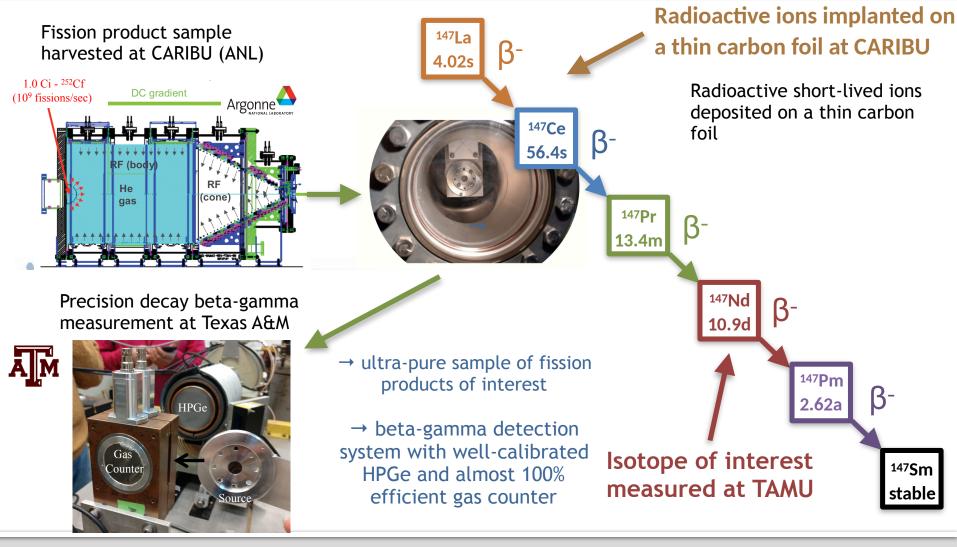
> Many long-lived isotopes have large (3% to even 30%) uncertainties on their γ -ray intensities and that nuclear data needs to be improved.



Lots of new fission yields measurements, still some suffer from poor beta decay information

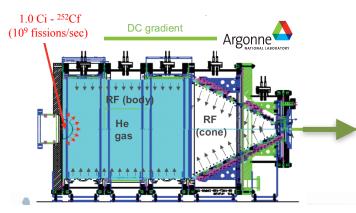
 \rightarrow (LLNL-LANL-TUNL) new results for ²³⁸U(n,f) at E_n = 4.6MeV with fission yields of short (seconds and minutes) fission products

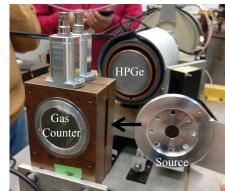
→ the γ-ray intensity uncertainty major contributing factor in the total (absolute) uncertainty of all RABITTS FPYs except for a few, with the γ-ray intensity uncertainties of 10% up to even 30%!


 \rightarrow several short-lived FPYs including **isomeric** yields discrepant with the evaluated values.

These measurements rely on accurate knowledge of the half life ,absolute γ- ray intensities and isomers of these short-lived fission products, more precise values of these decay parameters are needed to reduce the systematic uncertainty in these FPYs.

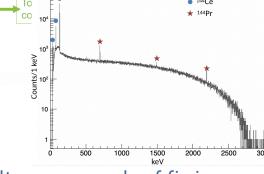
We developed a method for sub-1% precision decay measurements of long-lived fission products




We developed a method for sub-1% precision decay measurements of long-lived fission products

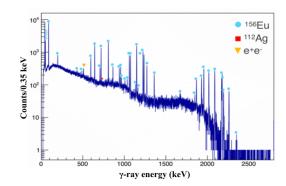
Fission product sample harvested at CARIBU (ANL)

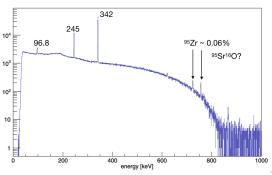
Precision decay beta-gamma measurement at Texas A&M



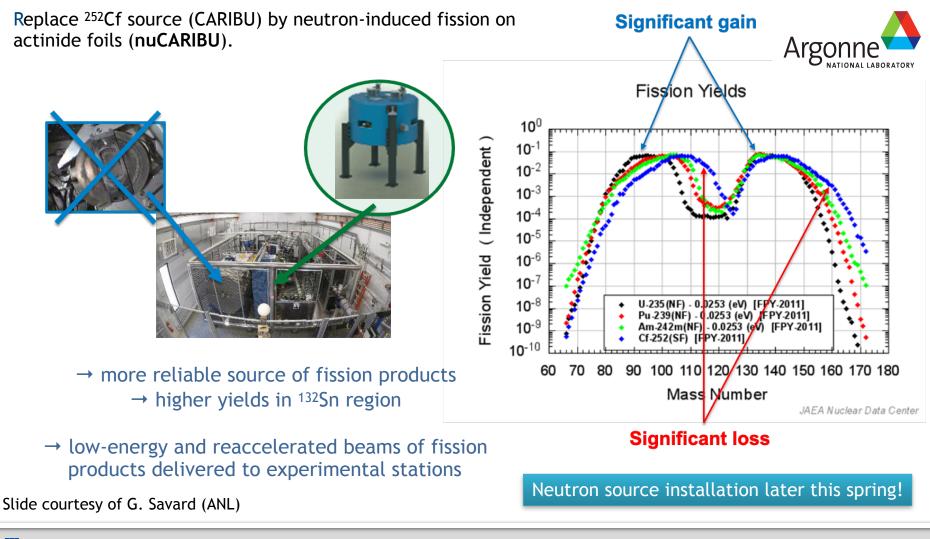
Results for ⁹⁵Zr and ¹⁴⁷Nd:

K. Kolos, N. D. Scielzo LLNL-TR-811617 (2020)


K. Kolos, et. al., Nucl. Instrum. Methods A 1000 165240 (2021)


We have carried out multiple experiments throughout the last few years and more results to come for ¹⁴⁴Ce, ¹⁵⁶Eu and ¹¹¹Ag:

→ ultra-pure sample of fission products of interest


→ beta-gamma detection system with well-calibrated HPGe and almost 100% efficient gas counter

Lawrence Livermore National Laboratory LLNL-PRES-846016

nuCARIBU opens up new opportunities for measuring short-lived fission products from actinides

Improving decay data with the X-Array

X-Array: 5 HPGe clover detectors (4 of 60x60 mm and one 70x70 mm SuperClover **beta plastic detector** (~80%efficiency GEANT4), mylar **tape station**, and **digital electronics**

 \rightarrow allows for measurements of half-lives, γ - γ cascades, and isomers of fission products with T_{1/2} as short as ~ ms

Previously measured: ^{134, 134m}**Sb** half-life and high-to-low spin ratio K. Siegl, K. Kolos, N. D. Scielzo et al. PRC 98, 054307 (2018)

 \rightarrow we were able to improve half lives of ground state and isomer in ¹³⁴Sb

¹³⁴Sb T_{1/2} = 0.6744(53) s (Previous value 0.78(6) s)

^{134m}Sb T_{1/2} = 9.87(11) s (Previous value 10.07(5) s)

 \rightarrow high-to-low spin (isomer-to-ground state) ratio obtained from β build-up and decay curves:

 $\sigma_h / \sigma_l = 2.03 \pm 0.05$

The isomeric yield ratio can be used to understand the initial angular momentum of the fragments from the fissioning system.

Instrument capable of delivering high-quality data and in combination with fission product beams from nuCARIBU will be a great resource for future measurements

First of many measurements of short-lived fission products to improve FPY evaluations

ightarrow 5 days of beamtime at Argonne National Laboratory to investigate the beta-decay of ¹²⁸Sn

 \rightarrow this isotope is an important species used in FPY evaluations but the uncertainties in its' γ -ray intensity (12% unc.) currently *contribute* 80% of the total error to FPY.

 \rightarrow Experiment will use radioactive beam of ¹²⁸Sn from CARIBU/nuCARIBU and implant on a mylar tape inside the plastic detector in conjunction with the X-Array.

 \rightarrow with different tape cycles measurements of both isotopes ^{128}Sn and ^{128}Sb and their isomers

 \rightarrow With this state-of-the art technique we expect to improve the most intense and most relevant to applications γ -ray intensities from the beta-decay of ¹²⁸Sn by a factor of 4

 \rightarrow additionally measurements of half-lives and isomer-to-gs ratios

Decay of ground state and isomer of ¹²⁸Sn/¹²⁸Sb will be remeasured (X-Array + SATURN + nuCARIBU)

E _n (MeV)	²³⁵ U <i>n</i> - induced FPY	Current Error	Expected improved Error
4.5	0.84	0.11	0.05
9	0.88	0.11	0.04

FPY results from J. Silano and A. Tonchev (LLNL)

Lawrence Livermore National Laboratory

Experiment will improve precision of neutron-induced cumulative FPY of ¹²⁸Sn by up to a factor of 3!

Opportunities for addressing nuclear data needs on short-lived fission products

 \rightarrow γ -ray intensities are essential for determining the fission product yields and the quality of that data directly impact quality of the FPY

 \rightarrow nuCARIBU facility at ANL will open up new great opportunity for decay studies of fission products with the X-Array and Gammasphere (ideal for high-Q value isotopes and detecting large cascades)

 \rightarrow measurements of half lives, γ -intensities, isomers

→ with multiple-gamma detection capability - with the
Gammasphere - we will be able to collect precise data on
complex decay schemes and pin down inconsistent transitions

(also see talk of Jeremias Garcia Duarte)

→ Measurements of decay properties also at FRIB with FRIB Decay -Station Versatile state-of-the art array of implant, charged particle, gamma-ray and neutron detectors capable of "complete" decay information

Thank you!

