Integral Fission Product Yields Multi-lab

Pacific Northwest

NEVADA NATIONA

NATIONAL LABORATOR

SECURITY SITE

Lawrence Livermore T.A. Bredeweg / J.T. Harke / J. Friese National Laboratory

LANL / LLNL / PNNL

WANDA 2023 27 February - 2 March 2023

Defense Nuclear Nonproliferation Research & Development Program

Integral Fission Product Yields

INNOVATE. COLLABORATE. DELIVER.

Objective: Make improved measurements of integral cumulative and short-lived fission product yields, and related cross sections, for major and minor actinides in relevant neutron fields.

<u>Approach</u>: Make use of burst and steady-state critical assemblies, and other neutron sources, to irradiate well characterized actinide and non-actinide samples, and use multiple techniques to extract fission product yields.

Measurements Made/Scheduled since 2012					
Task	Year(s)	Neutron Source(s)	Material(s) of Interest		
CFPY*	2012-2018	NCERC – Planet, Comet & Flattop D-T Generator	²³³ U, ²³⁵ U, ²³⁸ U, ²³⁷ Np		
SLFPY	2015-2018	NCERC – Godiva	²³⁸ U, ²³⁵ U, ²³⁹ Pu		
CFPY	2020	D-T Generator	²³⁵ U		
SLFPY	2020	NCERC – Godiva	²³⁷ Np		
СГРҮ	2021	NCERC – Flattop Fission Chamber	²³⁵ U		
SLFPY	March 2022	NCERC – Godiva	²³³ U		
СГРҮ	April 2022	NCERC – Godiva Fission Chamber	²³⁹ Pu		
SLFPY	May 2022	OSU TRIGA	²³⁸ U		

Cumulative Fission Product Yields (CFPY)

INNOVATE. COLLABORATE. DELIVER.

FY21 CFPY runs on Flattop – Uranium Results

INNOVATE. COLLABORATE. DELIVER.

- Excellent agreement between PNNL & LANL total fissions, actinide analysis, and across almost all fission products.
- Ultrasonic weld containment tested with irradiated depleted U targets planned deployment April '22 with Pu targets.

R-value calculations for NCERC assemblies

INNOVATE. COLLABORATE. DELIVER.

We use recent BeoH calculations for the energy dependent FPY from 239 Pu(n,f) and for 235 U(n_{th},f) to calculate the R-values for 147 Nd for various critical assemblies. The theory values were averaged with the neutron flux simulated with MCNP 6.2 for a given radius from the center of the critical assembly.

20 40 60

FPY(BeoH)+MCNP6.2

Chadwick et al.

80

100 120

Radius (mm)

Iridium activation measurements at NCERC

INNOVATE. COLLABORATE. DELIVER.

We use high-resolution silicon drift detectors to measure the X-rays from the iridium samples. We determine ^{193m}Ir/¹⁹²Ir ratio by fitting the three peaks with Voigt functions and correcting the peak areas for the ¹⁹²Ir and ^{193m}Ir decay.

We measured the spectra at different times since the irradiation and calculated the weighted average ^{193m}Ir/¹⁹²Ir ratio.

Short-Lived Fission Product Yields (SLFPY)

INNOVATE. COLLABORATE. DELIVER.

²³⁷Np Results : Example ⁹³Y

• Observed 3 'clean' γ -rays from the decay of ⁹³Y

- Extrapolate Decay Curve fits back to irradiation time : A₀
 - Correct for DAQ live-time, detection efficiency, and self-attenuation

$$C(t_1, t_2) = \int_{t_1}^{t_2} A(t)dt = \frac{A_0}{\lambda} e^{-\lambda t_2} (e^{\lambda \Delta t} - 1)$$

 $A_0 t_{1/2}$

$$Y = \frac{1}{\ln(2) \Gamma N_{f}}$$

$$\Gamma : Branching Ratio$$

$$N_{f} : Number of Fissions$$
Activity vs Time (1st order fit): ⁸⁵Y : E_r = 1918 keV (Det. 8815)
$$E_{\gamma} = 1918 keV$$

$$F_{\gamma} = 1918 keV$$

20

25

30

Activity (Counts per hour) 05

10

5

10

15

35 40 Time (hours)

²³⁷Np Results : 45 Isotopes/Isomers : 191 γ-rays

Summary: FY21 Experimental Activities

INNOVATE. COLLABORATE. DELIVER.

Dates	Task	Activity
Oct 27-29, 2020	CFPY	²³⁵ U fission chamber testing at the MIT NRL
Apr 7-9, 2021	CFPY	²³⁵ U fission chamber testing on Flattop
Apr 12-14, 2021	CFPY	²³⁵ U production irradiation on Flattop
Apr 26-29, 2021	API	Flattop core swap (Oy \rightarrow Pu)
May 3-5, 2021	API	Production irradiation on Flattop-Pu
Jun 14-15, 2021	SLFPY	²³³ U production irradiation on Godiva – POSTPONED (detector failure)
Jul 13-15, 2021	CFPY	²³⁵ U fission chamber testing on Godiva
Jul 19-21, 2021	CFPY	Supported CSoM on ²³⁸ U production irradiation on Flattop
Sep 15-16, 2021	CFPY	²³⁵ U fission chamber testing at the MIT NRL
Sep 2021	CFPY	²³⁹ Pu test irradiation on 14 MeV D-T source. Analysis in FY22.

We completed 3 experimental campaigns at NCERC and 1 at PNNL in FY21.

Summary: FY22 Experimental Activities

INNOVATE. COLLABORATE. DELIVER.

Dates	Task	Activity
Feb 1-3, 2022	CFPY	²³⁵ U fission chamber testing at the MIT NRL
Mar 7-10, 2022	CFPY	²³⁵ U fission chamber testing on Godiva
Mar 22, 2022	SLFPY	²³³ U production irradiation on Godiva
Apr 18-21, 2022	CFPY	Final setup and testing for the ²³⁹ Pu irradiation on Godiva
Apr 25-28, 2022	CFPY	²³⁹ Pu production irradiation on Godiva
Apr 2022	SLFPY	²³⁸ U 14 MeV D-T generator – proof in principle measurement
Apr 2022	SLFPY	²³⁸ U Oregon State University TRIGA Nuclear Reactor
May 2-5, 2022	API	Flattop core swap (Oy \rightarrow Pu)
May 9-12, 2022	ΑΡΙ	API production irradiation on Flattop-Pu
March 2023	CFPY	²³⁹ Pu production irradiation on 14 MeV D-T source

We completed 3 experimental campaigns at NCERC, 1 at LLNL, and 1 at OSU in FY22.

We have 1 experimental campaign planned at PNNL in FY23.

Outlook: FY23 Experimental Activities

INNOVATE. COLLABORATE. DELIVER.

Dates	Task	Activity
Mar 20-23, 2023	CFPY	²⁵² Cf fission chamber testing at LANL with CEA collaborators
Apr 10-12, 2023	SLFPY	²³⁵ U production irradiation on Godiva w/ comparative radiochemistry
May 1, 2023	SLFPY	²³⁹ Pu production irradiation on 14 MeV D-T source at PNNL (w/ a fission chamber?)
May 15-18, 2023	CFPY	²³⁵ U fission chamber testing on Flattop with CEA collaborators

The Full Team

INNOVATE. COLLABORATE. DELIVER.

- J. Berger
- M.A. Boggs
- M. Boswell
- E.M. Bond
- S.M. Bowen
- T.A. Bredeweg
- J.A. Bounds
- G.H. Brooks, Jr.
- M.R. Cisneros
- D.L. Cox III
- T.E. Cutler
- D.E. Dry
- J.A. Favorite
- M.J. Gallegos
- A.J. Gaunt
- R.R. Gibson
- J.M. Goda
- M.E. Gooden
- S.K. Hanson
- D.K. Hayes
- L.A. Hudston
- J.D. Hutchinson

- K.R. Jackman
- M.R. James
- C.C. Keith
- W.S. Kinman
- C.A. Lance
- G. Lee
- R.C. Little
- M.R. MacInnes
- C. Margiotta
- A.M. Marenco
- I. May
- J.L. McGovern
- G.E. McKenzie IV
- D. Meininger
- D.K. Melton
- J.L. Miller
- A.D. Montoya
- W.L. Myers
- W.J. Oldham
- S.D. Pacheco
- S.D. Reilly

• A.C. Olson

- R.J. Rendon
- A.R. Roman
- J.R. Romero
- R.S. Rundberg
- R.G. Sanchez
- A.R. Schake
- N.C. Smythe
- J.L. Walker
- M.C. White
- C.W. Wilkerson, Jr.
- J.M. Williams
- M.S. Wren

- E. Arnold
- L. Arrigo
- C. Beck
- J. BowenM. Cantaloub
- J. Friese
- B. Gartman
- L. Greenwood
- M. Haney

L. Metz

- S. Herman
- D. Lucas

- B.D. Pierson
- S. Tedrow
- T. Trang-le
- N. Uhnak
- B. Bandong
- S. Burcher
- J.A. Church
- N. Gharibyan
- J.J. Goodell
- J.T. Harke
- N. Harward
- S.W. Padgett

- P. Zhao
- K. Roberts
- G. Slavik
- S. Menn
- L. Minc
- C. Palmer
- S. Reese
- A.S. Tamashiro

s Collaborative project with CEA-DAM

Collaborations with Colorado School of Mines and Oregon State University

•

This work was funded by the Office of Defense Nuclear Nonproliferation Research and Development of the U.S. Department of Energy's National Nuclear Security Administration.

This work utilized the National Criticality Experiments Research Center supported by the Nuclear Criticality Safety Program of the U.S. Department of Energy's National Nuclear Security Administration

INNOVATE. COLLABORATE. DELIVER.

Neutron Sources

Flattop (NCERC)

- Fast/fission Spectrum
- U(93) (17.7 Kg) & WG Pu (6 kg) cores / ^{Nat}U Reflector (~1000 kg)
- Horizontal ("traverse") glory hole
- 10¹³ fissions/g on samples

Godiva IV (NCERC)

- Fast/fission neutron spectrum
- U(93) (65.5 kg, 1.5% Mo by wt)
- Super-Prompt Critical Operations
- Vertical glory hole for samples
- $1-4 \times 10^{16}$ Total Fissions / burst

INNOVATE. COLLABORATE. DELIVER.

D-T Generator (PNNL)

- Thermo D711 neutron generator
- Low scatter facility at PNNL
- Max neutron flux of 1×10⁹ n/cm²/s

Oregon State TRIGA Reactor

1.1 MW Mark II Pulsing Research Reactor

- Neutron flux of the Rabbit irradiation port
- 1.73×10¹³ n/(cm² s) (Thermal)
- 5.91×10¹² n/(cm² s) (Epithermal)
- 5.37×10¹² n/(cm² s) (Fast)

Short-Lived FPY Task Seconds to days post irradiation

Cumulative FPY Task Days to weeks post irradiation

Short-Lived FPY Task Hours to days post irradiation

Cumulative FPY Task Days to weeks post irradiation

Fission Chamber Performance

INNOVATE. COLLABORATE. DELIVER.

Pulse height spectra from the Mark II fission chamber

- Testing 0.17 cm gap with ²⁵²Cf
- Testing 0.34 cm gap with ²³⁵U
- Both using P-10 fill gas •

16000

16000