Improving the ²³⁸U(n,n') cross section using neutron-gamma coincidences

Lee Bernstein

Department of Nuclear Engineering University of California, Berkeley

Nuclear Science Division Lawrence Berkeley National Laboratory

BERKELEY LAB

BLUF (Bottom Line Up Front)

LBNL

- Built and benchmarked the *Gamma Energy Neutron Energy Spectrometer for Inelastic Scattering* (GENESIS).
- Performed ${}^{56}Fe(n,xn\gamma)$ and ${}^{238}U(n,x\gamma)$ production runs in 2021.
- Analysis underway

LANL

- Took first Chi-Nu + HPGe data 9/19
- ⁵⁶Fe+n data (performed under separate funding) provides a path forward for ²³⁸U

BNL/NNDC

GENESIS ²³⁸U and ⁵⁶Fe Data being analyzed and interpreted

- Preparing for evaluation using other data set (⁸⁶Kr)
- Working with LBNL to develop an event generator that will allow for a forward fit comparison to the evaluation.

GENESIS at the 88-Inch cyclotron

GENESIS has been fully modeled in GEANT and benchmarked using ^{252}Cf and multiple γ -ray sources

This benchmarking together with the finite energy range of our beam allows for multiple simultaneous measurements

Josh Brown J.A. Brown ⁴ ⁴

Our goal of propagating modeled observables through a detector response function requires *accurate* simulation of GENESIS

⁵⁶Fe neutron-gated γ spectrum

RERKELEVIAE

J.M. Gordon

Yrast $4^+ \rightarrow 2^+$ (1238 keV) to $2^+ \rightarrow 0^+$ (847 keV) ratio

Yrast $4^+ \rightarrow 2^+$ (1238 keV) to $2^+ \rightarrow 0^+$ (847 keV) ratio

Optimize

20 input parameters, including

- Level density parameters
- Gamma-ray strength function
- Optical model parameters
- Branching ratios

Wait for it Jo...

We are developing a forward fit process to determine optimal neutron reaction modeling parameters using YAHFC

20 input parameters, including

- Level density parameters
- Gamma-ray strength function
- Optical model parameters
- Branching ratios

Monte Carlo codes provide a simpler approach to error propagation

Neutron-gated ²³⁸U Yrast Cascade

Neutron-gated ²³⁸U Off-yrast Transitions

J.A. Brown

14

We just completed a run using beam sweeping with 10 s on and 1 s off run to measure β -delayed and prompt γ -rays with a new compact geometry to increase neutron-gamma coincidences

We also ran ³⁵Cl(n,x)* 8/21 and 10/22

Simultaneous measurements of multiple exit channels should help address compensating uncertainties in reaction modeling

*Funded under an NEUP Grant

Improving low-energy neutron spectroscopy using CLYC

- Traditional PSD methods for CLYC provide poor separation between alphas and protons (making fast neutron spectroscopy difficult)
- Our new technique provides clean separation, allowing extension of neutron spectrum measurements down to 10s of keV

Alpha gated

Proton gated

CLYC-6 (Ce:Cs₂⁶LiYCl₆) allows for determination of the neutron flux using the well-known ⁶Li(n,t) α reaction

WANDA 2023 – LA.. Bernstein

*Funded under an NEUP Grant

Collaborators on the work you've seen today

C. E. Apgar¹, J. C. Batchelder¹, *J.A. Brown¹*, J. Bevins⁴,
C. Brand^{1,7}, D.L. Bleuel⁷, *A. Georgiadiou¹*, *J.M. Gordon¹*,
B.L. Goldblum^{2,1}, C.J. Henderson¹, T. Laplace¹, A. M. Lewis^{1*}, J. McClory⁴, J.T. Morrell^{3**}, *T. Nagel¹*, A. S. Voyles¹, *M. Wakeling⁴*

¹ University of California-Berkeley Dept. of Nuclear Engineering ² Lawrence Berkeley National Laboratory ³Lawrence Livermore National Laboratory ⁶Air Force Institute of Technology ^{*}Now at Naval Nuclear Laboratory ^{**}Now at Los Alamos National Laboratory

Office of **NUCLEAR ENERGY**

