Improving the $^{238}\text{U}(n,n')$ cross section using neutron-gamma coincidences

Lee Bernstein

Department of Nuclear Engineering
University of California, Berkeley

Nuclear Science Division
Lawrence Berkeley National Laboratory
BLUF (Bottom Line Up Front)

LBNL
- Built and benchmarked the *Gamma Energy Neutron Energy Spectrometer for Inelastic Scattering* (GENESIS).
- Performed $^{56}\text{Fe}(n,xn\gamma)$ and $^{238}\text{U}(n,x\gamma)$ production runs in 2021.
- Analysis underway

LANL
- Took first Chi-Nu + HPGe data 9/19
- $^{56}\text{Fe}+n$ data (performed under separate funding) provides a path forward for ^{238}U

BNL/NNDC
- Preparing for evaluation using other data set (^{86}Kr)
- Working with LBNL to develop an event generator that will allow for a forward fit comparison to the evaluation.
GENESIS at the 88-Inch cyclotron

Cave 5 GENESIS Measurement Setup
Berkeley Lab

DTOF
Kinematic Flux Monitor

Scintillators
HPGe

Neutron Source
VAULT

Bending Magnet
Switching Magnet

D-beam

\[
\phi_n \text{ in } 10^8 / \text{MeV/ster/µC}
\]

Neutron Energy (MeV)

DTOF 14 MeV D on C

Neutron Monitor
Photomultiplier Tube
Foil Packs
Concrete
Sand Bags
VAULT

Sand
Concrete

Indium Foils
CAVE 01
CAVE 02

#1
#2

GENESIS at the 88-Inch cyclotron

WANDA 2023 – L.A. Bernstein

3
GENESIS has been fully modeled in GEANT and benchmarked using ^{252}Cf and multiple γ-ray sources. This benchmarking together with the finite energy range of our beam allows for multiple simultaneous measurements.
Our goal of propagating modeled observables through a detector response function requires **accurate** simulation of GENESIS.

Percent level agreement in measured and simulated gamma response with isotropic and extended sources.

Cf-252 source used to benchmark integral and differential neutron detection efficiency.
56Fe neutron-gated γ spectrum

- 846.7 keV $2^+_1 \rightarrow 0^+_1$
- 1037.8 keV $2^+_2 \rightarrow 0^+_1$
- 1238.2 keV $4^+_1 \rightarrow 2^+_1$
- 2113.1 keV $2^+_3 \rightarrow 2^+_2$

J.M. Gordon
Yrast $4^+ \rightarrow 2^+$ (1238 keV) to $2^+ \rightarrow 0^+$ (847 keV) ratio

\[
\begin{align*}
4_1^+ & \rightarrow 2_1^+ (E_x = 2085 \text{ keV}) \\
2_1^+ & \rightarrow 0_1^+ (E_x = 847 \text{ keV})
\end{align*}
\]

Significant differences seen 140-160 ns after RF, e.g.:
- 1.2-1.3 MeV
- 2.9-3.2 MeV
- 11.7-15.3 MeV

\[
\Phi_n (10^8 \text{MeV/MeV/sr/uc})
\]

Majority of yield coming in below 4 MeV is consistent with significant compound emission

What about (n,elastic)?

*A. Negret et al., PRC 90, 034602 (2014)
Yrast $4^+ \rightarrow 2^+ (1238 \text{ keV})$ to $2^+ \rightarrow 0^+ (847 \text{ keV})$ ratio

$4_1^+ \rightarrow 2_1^+ (E_x = 2085 \text{ keV})$

$2_1^+ \rightarrow 0_1^+ (E_x = 847 \text{ keV})$

Significant differences seen 140-160 ns after RF, e.g.:

- 1.2-1.3 MeV
- 2.9-3.2 MeV
- 11.7-15.3 MeV

A blank-subtracted neutron spectrum shows elastically-scattered neutrons at forward angles

Analysis to be completed in CY23

A. Negret et al., PRC 90, 034602 (2014)
We are developing a forward fit process to determine optimal neutron reaction modeling parameters using Talys Reaction Models (E_n, q_n) based on multiple measurements and optimizations.

20 input parameters, including:
- Level density parameters
- Gamma-ray strength function
- Optical model parameters
- Branching ratios

Wait for it Jo…

Yrast $\frac{4_1^+ \rightarrow 2_1^+}{2_1^+ \rightarrow 0_1^+}$ ratio

χ^2/dof = 1.647
We are developing a forward fit process to determine optimal neutron reaction modeling parameters using YAHFC Reaction Models $\sigma(E_n, \theta_n)$.

20 input parameters, including:
- Level density parameters
- Gamma-ray strength function
- Optical model parameters
- Branching ratios

Monte Carlo codes provide a simpler approach to error propagation.
Neutron-gated 238U Yrast Cascade

$103.5 \text{ keV} \quad 4_1^+ \rightarrow 2_1^+$

$158.5 \text{ keV} \quad 6_1^+ \rightarrow 4_1^+$

$211.2 \text{ keV} \quad 8_1^+ \rightarrow 6_1^+$
Neutron-gated 238U Off-yrast Transitions

Analysis to be completed in CY23

- $886.2 \text{ keV} \quad 1^- \rightarrow 2^+_1$
- $925.7 \text{ keV} \quad 3^- \rightarrow 2^+_1$
- $952.7 \text{ keV} \quad 6^+_2 \rightarrow 6^+_1$
- $1014.6 \text{ keV} \quad (3^+_1) \rightarrow 2^+_1$
- $1060.3 \text{ keV} \quad 2^+_3 \rightarrow 0^+_1$
- $1112.3 \text{ keV} \quad 1^- \rightarrow 0^+_1$
We just completed a run using beam sweeping with 10 s on and 1 s off run to measure \(\beta\)-delayed and prompt \(\gamma\)-rays with a new compact geometry to increase neutron-gamma coincidences.

The in-beam and beam-off \((n,f\gamma)\) data is being analyzed by NSSC graduate student Preston Awedisean.
We also ran $^{35}\text{Cl}(n,x)^\ast$ 8/21 and 10/22

Differential Experiment #3
$^{35}\text{Cl}(n,p)$ and $^{35}\text{Cl}(n,\alpha)$ from a CLYC (Ce:Cs$_2^6$LiYCl$_6$) Active Target

Differential Experiment #2
$^{35}\text{Cl}(n,n')$ & $^{35}\text{Cl}(n,\gamma)$ using NaCl tablet

Simultaneous measurements of multiple exit channels should help address compensating uncertainties in reaction modeling

Integral Experiment #1
Production of ^{35}S and ^{32}P via $^{35}\text{Cl}(n,p)$ and $^{35}\text{Cl}(n,\alpha)$ on a NaCl tablet (Ni monitor foil)

*Funded under an NEUP Grant
This part of the experiment is allowing us to determine $\Phi(E_n < 1 \text{ MeV})$

Differential Experiment #3

$^{35}\text{Cl}(n,p)$ and $^{35}\text{Cl}(n,\alpha)$ from a CLYC ($\text{Ce:Cs}_2\text{LiYCl}_6$) Active Target

$^{35}\text{Cl}(n,p)$ and $^{35}\text{Cl}(n,\alpha)$ from a CLYC ($\text{Ce:Cs}_2\text{LiYCl}_6$) Active Target

Funded under an NEUP Grant
Improving low-energy neutron spectroscopy using CLYC

- Traditional PSD methods for CLYC provide poor separation between alphas and protons (making fast neutron spectroscopy difficult)
- Our new technique provides clean separation, allowing extension of neutron spectrum measurements down to 10s of keV

Alpha gated

\[^{6}\text{Li}(n,t)\alpha \]

\[^{6}\text{Li}(n_{\text{low}},t)\alpha \]

Proton gated

Fast neutrons via \[^{35}\text{Cl}(n,p) \]
CLYC-6 (Ce:Cs$_2^6$LiYCl$_6$) allows for determination of the neutron flux using the well-known 6Li(n,t)α reaction.
Collaborators on the work you’ve seen today

C. E. Apgar1, J. C. Batchelder1, \textbf{J.A. Brown}1, J. Bevins4, C. Brand1,7, D.L. Bleuel7, A. Georgiadiou1, J.M. Gordon1, B.L. Goldblum2,1, C.J. Henderson1, T. Laplace1, A. M. Lewis1*, J. McClory4, J.T. Morrell3**, \textbf{T. Nagel}1, A. S. Voyles1, \textbf{M. Wakeling}4

1 University of California-Berkeley Dept. of Nuclear Engineering
2 Lawrence Berkeley National Laboratory
3 Lawrence Livermore National Laboratory
4 Air Force Institute of Technology
* Now at Naval Nuclear Laboratory
** Now at Los Alamos National Laboratory