

WANDA 2023 Update: White Source n- γ Measurements of γ -Production Cross Sections at LANSCE

K. J. Kelly, M. Devlin (presenting), E.A. Bennett, J.M. O'Donnell, M. Paris

2023 WANDA

Outline

- Project Motivation
- Analysis Methods
- 27 Al and 16 O Measurements, and 12 C
- Future Work

Motivation: Active Interrogation

- Identify contents of a container via neutron irradiation
- γ-ray emission used for ID
- Requires knowledge of γ -prod. XS
 - Effectively equal to $(n,n'\gamma)$ XS for many nuclei
- Also require understanding of neutron transport

CoGNAC n-y Approach to Scattering

- PSD n- γ separation \Rightarrow treat each detector as both n and γ detector
 - Incident Neutron Energy, E_n^{inc} , from t_0 - t_γ time difference
 - Outgoing Neutron Energy, E_n^{out} , from t_γ - t_n time difference
- Chi-Nu liquid scintillator array and nearly complete CLYC-6 detector

Iterative Unfolding of Neutron Spectra

$$m_{\alpha|\beta}^{(n+1)}(E) = \frac{m_{\alpha|\beta}^{(n)}(E)c_{\alpha}(E)}{\sum_{i=1}^{N} \mathcal{R}(E, E_i)m_{\alpha|\beta}^{(n)}(E_i)}$$

Kelly *et al.*, NIMA **1010** (2021) 165552 Kelly *et al.*, NIMA **866** (2017) 182 Gold, Report ANL-6984 (1964)

- Improves resolution of state excitations
- Corrects for environmental *n* scattering effects
- Extract full strength of each excited state
 - Demonstrated with continuous PFNS in MCNP

Preliminary ${}^{12}C(n,n'\gamma)$ Cross Section

- Correlated *n*-γ Distributions: Kelly *et al.*, PRC **104** (2021) 064614
- γ-Production XS motivated liq. scint. γ-ray Investigations
- No competing γ rays \Rightarrow high-res, high-stats ${}^{12}C(n,n'\gamma)$ XS

$\frac{27}{\text{Al}(n,n'\gamma)}$ Cross Sections

• All data normalized to 4.0 MeV data point at $E_x = 2212 \text{ keV}$

Preliminary Results for ${}^{16}O(n,n'\gamma)$

- ${}^{27}\text{Al}(n,n'\gamma)$ data under review
- ${}^{16}O(n,n'\gamma)$ results preliminary, but promising
- ${}^{28}\text{Si}(n,n'\gamma)$ data, and likely more ${}^{16}\text{O}$ data, to be collected during the 2023 run cycle

