

Modern Structure-based Nuclear Data Evaluations for Basic Science, Nuclear Safety & Security

"SBEND: Structure-based Evaluation of Nuclear Data"

BNL/LANL/LLNL DOE Collaboration New start; Project duration: CY2023-CY2025

M. Paris (LANL/PI), D. Brown (BNL/co-PI), I. Thompson (LLNL/co-PI), G. Hale & <u>A. Lovell</u> (LANL/co-Invs)

2023-03-02

LA-UR-23-21998

Collaboration personnel

- M. Paris (PI, LANL)
 - Staff scientist Theoretical Divison (T-2)
 - NNDC Cross section evaluation working group (CSEWG) member
 - Consultant to IAEA (standards, R-matrix, Int. Nucl. Data Evaluation Network)
- D. Brown (co-PI, BNL)
 - Staff scientist Nucl. Science & Technology Dept.
 - Head National Nuclear Data Center (NNDC); CSEWG Chair; ENDF Manager
 - USNDP Chair
 - Chair GNDS Expert Group OECD/NEA-WPEC
- I. Thompson (co-PI, LLNL, Fellow APS/IoP)
 - Staff scientist Nuclear Data & Theory Group
 - USNDP POC
 - Consultant IAEA (R-matrix, INDEN-LE)
- G. Hale (co-Inv, LANL, Fellow APS)
 - Staff scientist T-Division (T-2) [50+ years!]
 - Evaluator for most of the light-element evaluations in ENDF/B
- A. Lovell (co-Inv, LANL)
 - Staff scientist T-Division (T-2)
 - Recent recipient of 2022 FRIB Theory Award (Bayesian analysis & UQ)

Collaborative work targeting objectives

Recent activity for work starting CY23

• Evaluations

- Nucleon-nucleon evaluation extension to upper energy of 100 MeV (from 50 MeV)
 - data cull via EXFOR, literature search, "archival", etc.
- Other recent, SBEND-relevant evaluation work
 - (by compound system)
 - ${}^{8}\text{Be} \sim d + {}^{6}\text{Li}$ in collaboration with J. DeBoer (U. Notre Dame)
 - ¹³C: working with K. Kelly (LANL) CoGNAC experiment
 - Evluation of new (n, n') data
 - ¹⁷O: new evaluation work
 - incorporate ¹⁶O* excited states for $(n, n'\gamma)$

• Theory development

- Faddeev-motivated R-matrix model development for $(n, n'\gamma) \& (z, z_1 z_2)$
 - *Phys. Rev. C* in preparation

Staff & Postdoc hiring

- New hires this spring/summer
 - L. Hlophe (currently @ LLNL) FRIB-TA Theory Fellow
 - TBA (very soon!) LANL new T-2 group staff position

 $T(d,\gamma)^{5}$ He Spectrum at 90° Lab

Thanks in advance for your questions & support

Planned Code Development

Collaboration work: Machine Learning

Address task of determining resonance parameters (spin, parity, couplings)

- Resonance *classification* problem
 spin, parity, other quantum numbers
 - expert knowledge reliant
- The Atlas Neutron Res has many
 - misclassified resonances!
- Classification well suited for ML

Raw Spectra

Feature Extraction Classification

Prediction

BRR uses a Machine Learning approach

ML-algo code tools

- BRR simple and robust method
 - Resonance spin group assignment is label
 - Use out-of-distribution metrics as ML features
 - Train on high-fidelity evaluations
 - extend other compound systems, higher energies
- MDN (Mixture Density Network)
 - probabistic ML for uncertainty quantification
- QUILTR (Quantified Uncertainties in Low-energy Theory for Reactions)
 - Bayesian Markov Chain Monte Carlo for FRESCO
 - quantifies parametric uncertainties on model parameters

Employ lightweight scikit-learn classifiers and clever problem design

BRR reclassified 17% of ⁵²Cr resonances

* Fig. taken from K.M. Mendez et al. Metabolomics 15, 142 (2019) https://doi.org/10.1007/s11306-019-1608-0

learn