

Addition of a barrier layer for Cu/Agsheathed 122-type wires and tapes

Xingchen Xu

Fermi National Accelerator Laboratory

Fang Wan, Zuhawn Sung (Fermilab), Yuta Hasegawa, Shinjiro Kikuchi, Akiyasu Yamamoto (Tokyo University of Agriculture and Technology)

Motivation

This work was inspired by some issues mentioned in some talks in the ASC'20 & CEC-ICMC'21. A promising design for 122 wires/tapes: Cu/Ag sheath. To avoid liquid formation, HT below 779C.

Issue #1: compromised HT

Low sintering temperature is one of the problems existed in

Cu/Ag composite sheathed wires.

- he final the Restricted by temperature of Cu/Ag, the final sintering temperature must be lower than 750°C.
- But for 122 tape, the optimal annealing temperature is higher than 850°C.

Zhang, WK2MOr2B-08, ASC'20

Core

EnK122

diffusion area

Att atta

200

Dong, M4Or1B-02, CEC-ICMC'21

Huang et al, SUST, 2019, 025007

#2: Cu-Sn interdiffusion in solid state

Yao, M4Or1B-01, CEC-ICMC'21

Office of Science

- A possible solution: add a barrier.
- The key is the barrier material.
- Meanwhile, I was asked to join an . existing IBS LDRD (PI: Z Sung).
- Decided to use this opportunity to explore the feasibility.

Selection of the barrier materials

- □ The group-VB metals (V, Nb, Ta) are generally inert to both Cu and Ag, making them good candidates.
- \Box All of these metals have already been used as barrier materials for Nb₃Sn conductors.

No phase diagram for Ag-V, Ag-Nb, Ag-Ta can be found, because they are immiscible.

□ The major questions this work needs to answer are:

Office of Science

- Can the barrier layer withstand severe deformations wire drawing & flat-rolling (wires → tapes)?
- Can they really prevent Cu-Ag interdiffusion even at 900C, allowing a wider HT window?
- **Started with Nb and Ta, due to limited availability of the high-ductility V.**

Mono-filamentary wires fabricated

- 2 IBS powders were made in TUAT: $BaFe_{1.84}Co_{0.16}As_2$, $Ba_{0.6}K_{0.4}Fe_2As_2$; each filled into an Ag tube (4x6 mm).
- The Ag tubes were sealed in plastic bags under Ar and sent to Fermilab for wire fabrication.

Half of the Ag tube w/ Co-doped powder was wrapped tightly by >2 but <3 turns of 140 μ m thick pure Ta foil.

Half of the Ag tube w/ K-doped powder was wrapped tightly by >2 but <3 turns of 130 μ m thick pure Nb foil.

- Each Ag tube was inserted into a 12.7mm O.D. Cu tube, then drawn to Φ1.21mm. No breakage occurred.
- So we obtained 4 wires:

- Both the Ta and the Nb layers kept integral after wire drawing, indicating they should be usable for wires.
- Circled regions are thinner than the rest, because not covered by the 3rd foil turn. Use of tubes can solve it.

Tapes fabricated & after HT

- The 4 wires were flat-rolled to 0.4 mm thickness (67% thickness reduction).
- We also rolled the K-Nb wire to 0.33 & 0.2 mm thick (73% & 84% reduction). So totally 6 tapes:

HT: in vacuum at 740°C/12h.

Additional HT for the Co-Ta and K-Nb wires/tapes: 850°C/2h & 900°C/0.5h.

ENERGY

Science

The intact Nb avoided forming liquid in K-Nb-84% even at 900C.

Nb performed better than Ta during flat-rolling because Nb is more ductile.

Science

Composition studies

EDS line scans for (a) Co-noTa-67%, (b) K-noNb-67% after 740°C/12h HT:

Co-noTa & K-noNb had similar phenomena:

- Ag diffused into Cu, reducing Cu RRR and thermal conductivity.
- Cu diffused into Ag, with Cu content as high as 9at.%.
- Cu also diffused into the IBS core, with a content as high as 5at.%.

- Ag did not diffuse into the Cu layer.
- Some Cu diffused into Nb, but Cu at.% in Ag was very low and was negligible in the IBS core, indicating that the Nb effectively blocked the Ag-Cu interdiffusion.
- An As peak is seen at the Ag/Nb interface, but no influence on IBS core composition. So we expect no effect on IBS properties.
- EDS on Co-Ta-850°C/2h: no Cu in Ta or Ag. So, Ta may be a better barrier for wires.

Future work

T_c results for Co-noTa and K-noNb wires:

Potential causes of the problem:

- Powders?
- Oxidation during transportation?

Office of Science

Future work:

- Work with TUAT to improve the powder quality and solve the transportation issue.
- Test to see if this design really improves IBS performance.

- Neighboring segments from the same heat treated wire had quite different *T_c* values.
- These indicate that there is serious inhomogeneity issue with the IBS powders.

