Far-off-equilibrium journeys through the QCD phase diagram

Ulrich Heinz THE OHIO STATE UNIVERSITY

Symposium on collective flow in nuclear matter: a celebration of Art Poskanzer's life and career LBNL, December 9-10, 2022

Journeys

Poskanzer Symposium, 12/10/2022 1/32

Exploring the QCD phase diagram: emergent phenomena in non-Abelian media

Phenomena:

- (De-)confinement (clustered vs. homogeneous states)
- chiral symmetry restoration
- (almost) perfect fluidity
- order of the phase transition(s)
- critical end point?

(from the 2007 NSAC Nuclear Physics LRP)

What happened in the early universe about $10 \,\mu s$ after the Big Bang?

What changes when you dope the matter that filled the early universe with extra quarks/baryon number?

(日)

Exploring the QCD phase diagram: emergent phenomena in non-Abelian media

Probes:

- Collective flow
- Jet modification and quenching
- Thermal electromagnetic radiation
- Critical fluctuations

• . . .

Compass for the QCD phase diagram

5/32

Compass for the QCD phase diagram

Isentropic evolution (ideal fluid dynamics)

Consider a simple model:

noninteracting gas of gluons (bosons, $m_g = 0$) and quarks & antiquarks (fermions, $m_q = m$) with non-zero net baryon number in chemical equilibrium

More details:

Chattopadhyay, UH, Schäfer, 2209.10483; Florkowski, Maksymiuk, Ryblewski, 1710.07905

Isentropic evolution (ideal fluid dynamics) $(T, n \rightarrow 0 \Rightarrow \mu \rightarrow m)$

What should we expect for dissipative expansion?

Ulrich Heinz (OSU)

Poskanzer Symposium, 12/10/2022 9 / 32

Second-order Chapman Enskog hydrodynamics

Denicol et al., 1407.4767; A. Jaiswal, Ryblewski, Strickland, 1407.7231

Simple flow model: 1-d Bjorken expansion:

$$\begin{aligned} \frac{de}{d\tau} &= -\frac{1}{\tau} \Big(e + P + \Pi - \pi \Big), \\ \frac{dn}{d\tau} &= \frac{n}{\tau}, \\ \frac{d\Pi}{d\tau} &+ \frac{\Pi}{\tau_R} = -\frac{\beta_{\Pi}}{\tau} - \delta_{\Pi\Pi} \frac{\Pi}{\tau} + \lambda_{\Pi\pi} \frac{\pi}{\tau}, \\ \frac{d\pi}{d\tau} &+ \frac{\pi}{\tau_R} = \frac{4}{3} \frac{\beta_{\pi}}{\tau} - \left(\frac{1}{3} \tau_{\pi\pi} + \delta_{\pi\pi} \right) \frac{\pi}{\tau} + \frac{2}{3} \lambda_{\pi\Pi} \frac{\Pi}{\tau} \end{aligned}$$

Transport coefficients from kinetic theory for a quark-gluon gas with nonzero quark mass Chattopadhyay, UH, Schäfer, 2209.10483

Ulrich Heinz (OSU)

Poskanzer Symposium, 12/10/2022 10/32

Dore, Noronha-Hostler, McLaughlin, 2007.15083

Dore, Noronha-Hostler, McLaughlin, 2007.15083

How can some of these trajectories evolve towards larger μ/T and therefore smaller s/n ?!

Ulrich Heinz	(OSU)	
--------------	-------	--

Journeys

Poskanzer Symposium, 12/10/2022 12/32

Dore, Noronha-Hostler, McLaughlin, 2007.15083

Ulrich Heinz (OSU)

Journeys

Poskanzer Symposium, 12/10/2022 13 / 32

Dore, Noronha-Hostler, McLaughlin, 2007.15083

Dore, Noronha-Hostler, McLaughlin, 2007.15083

How can some of these trajectories evolve towards larger μ/T and therefore smaller equilibrium s_{eq}/n ?

Ulrich Heinz (OSU)

Journeys

Poskanzer Symposium, 12/10/2022

15 / 32

Dissecting the problem Chattopadhyay, UH, Schäfer, 2209.10483

• The equilibrium state maximizes the entropy

 \implies for any given point (T, μ) in the phase diagram, $s/n \leq (s_{eq}/n)(T, \mu)$:

$$\frac{s}{n} = \frac{1}{n_{\rm eq}(T,\mu)} \left(s_{\rm eq}(T,\mu) - c_{\Pi}(T,\mu) \,\Pi^2 - c_{\pi}(T,\mu) \,\pi^{\mu\nu} \pi_{\mu\nu} + c_n(T,\mu) \,n^{\mu} n_{\mu} \right) + \dots$$

- **Dissipation creates entropy:** $T \partial_{\mu} S^{\mu} = \pi^{\mu\nu} \sigma_{\mu\nu} \prod \theta T n^{\mu} \nabla_{\mu} \alpha + \cdots \ge 0$, where $\sigma_{\mu\nu}$ is the shear flow tensor, θ is the scalar expansion rate, and $\alpha \equiv \mu/T$.
- During evolution, entropy flows between the equilibrium and non-equilibrium sectors. For Bjorken flow

$$\frac{d(s_{\rm eq}\tau)}{d\tau} = \frac{\pi - \Pi}{T}.$$

Journeys

I. The conformal case m = 0

Poskanzer Symposium, 12/10/2022 17 / 32

э

I. The conformal case m = 0; $\eta/s = 10/4\pi$

Poskanzer Symposium, 12/10/2022 18/32

I. The conformal case m = 0; $\eta/s = 10/4\pi$

I. The conformal case m = 0; $\eta/s = 10/4\pi$

Poskanzer Symposium, 12/10/2022 20 / 32

Is this an artifact of the hydrodynamic approximation? No!

Poskanzer Symposium, 12/10/2022 21/32

II. The non-conformal case for m = 1 GeV, ideal

II. The non-conformal case for m = 1 GeV, $\pi_0 = \Pi_0 = 0$

Ulrich Heinz (OSU)

Journeys

Poskanzer Symposium, 12/10/2022

II. Non-conformal case: m = 1 GeV, $[(\pi - \Pi)/(e+p)]_0 = -0.45$

Ulrich Heinz (OSU)

Poskanzer Symposium, 12/10/2022

II. Non-conformal case: m = 1 GeV, $[(\pi - \Pi)/(e+p)]_0 = -0.45$: Entropy production

Ulrich Heinz (OSU)

Journeys

Poskanzer Symposium, 12/10/2022 25 / 32

II. Non-conformal case: m = 1 GeV, $[(\pi - \Pi)/(e+p)]_0 = -0.45$: Entropy production

Kinetic theory vs. hydrodynamics: quantitative differences but qualitative consistency

Ulrich Heinz (OSU)

Journeys

Poskanzer Symposium, 12/10/2022

27 / 32

э

"Viscous cooling" Chattopadhyay, UH, Schäfer, in preparation

- For equilibrium initial conditions system experiences viscous heating – cools more slowly than ideal fluid. Well-known effect.
- For non-equilibrium initial conditions with $[(\pi-\Pi)/(e+p)]_0 < 0$ system experiences **viscous cooling** cools initially faster than ideal fluid.
- As the system approaches local equilibrium at late times (Navier-Stokes stage), viscous cooling turns into viscous heating.
- Both viscous heating and cooling phenomena last longer for larger relaxation times (i.e. for larger viscosities).

"Viscous cooling" Chattopadhyay, UH, Schäfer, in preparation

Qualitatively similar but less pronounced viscous cooling effect seen in the conformal (massless) limit.

Ulrich Heinz (OSU)

"Viscous cooling" Chattopadhyay, UH, Schäfer, in preparation

Viscous cooling reduces the thermal energy density faster than for ideal expansion, both as a function of time and as a function of net baryon density.

U	lrich	Heinz	(OSU)

Poskanzer Symposium, 12/10/2022 30/32

So what?

• Widespread folklore that must be un-learned:

"Dissipation can be understood as internal friction that causes viscous heating."

- For far-off-equilibrium systems there are situations where negative entropy can flow from the non-equilibrium to the equilibrium sector, causing the temperature and thermal energy density of the system to **decrease faster** than in an isentropically expanding ideal fluid ⇒ "viscous cooling"
- Viscous cooling arises only for far-off-equilibrium conditions where the bulk and shear viscous pressures start out with the "wrong" signs (i.e. opposite to their Navier-Stokes values towards which they evolve at late times).
- In non-conformal systems with sufficiently extreme initial conditions viscous cooling can cause the system to evolve initially towards larger μ/T values, seemingly violating deeply ingrained rules from our childhood.
- Unclear whether and under which conditions such far-off-equilibrium initial conditions can arise naturally in heavy-ion collisions.
- Interesting question: can macroscopic systems be initialized in analogous far-off-equilibrium initial states, in order to explore the dynamics of viscous cooling in the laboratory?

Thank you!

And many thanks to my collaborators and discussion partners on this project:

Xin An, Chandrodoy Chattopadhyay, Lipei Du, Derek Everett, Amaresh Jaiswal, Sunil Jaiswal, Dananjaya Liyanage, Mike McNelis, Subrata Pal, Thomas Schäfer, and Mike Strickland

