The Art of the Flow

Sergei A. Voloshin | WAYNE STATE |
| :---: |
| UNIVERSTY |

The Art of the Flow

Flow and:

- Centrality/energy dependence, and ideal fluid
- Constituent Quark Scaling, and deconfinement
- Nonflow/fluctuations, and "ridge", initial geometry
- azHBT, and proof of collective expansion
- Velocity fields, vorticity, and polarization

Exploring the secrets of the universe

Art Poskanzer

Coauthored with Art: 7 phenomenology, PAs: 2 NA49 and 9 STAR

QM '95, NA49 and flow at SPS

Quark Matter '95

```
Y. Zhang (E877) - technique, first flow measurements at AGS
J-Y. Ollitrault - 'non-flow"
```

s.Voloshin, Y . Zhang \quad arXiv:hep-ph/9407282v1 12 Jul 1994
$1+2 \mathrm{v}_{1} \cos \left(\phi-\Psi_{\mathrm{RP}}\right)+2 \mathrm{v}_{2} \cos \left[2\left(\phi-\Psi_{\mathrm{RP}}\right)\right]+\cdots$
$\mathrm{v}_{\mathrm{n}}=\left\langle\cos \left[\mathrm{n}\left(\phi_{\mathrm{i}}-\Psi_{\mathrm{RP}}\right)\right]\right\rangle$
Event plane resolution correction made for each harmonic
Unfiltered theory can be compared to experiment!

QM '95, NA49 and flow at SPS

QM '97
Directed and Elliptic Flow in $158 \mathrm{GeV} / \mathrm{Nucleon} \mathrm{Pb}+\mathrm{Pb}$ Collisions A.M. Poskanzer ${ }^{\text {a }}$ for the NA49 Collaboration

Quark Matter '95

Y. Zhang (E877) - technique, first flow
measurements at AGS
J-Y. Ollitrault - 'non-flow"
S.Voloshin, Y. Zhang arXiv:hep-ph/9407282v1 12 Jul 1994

$$
\begin{aligned}
& 1+2 v_{1} \cos \left(\phi-\Psi_{R P}\right)+2 v_{2} \cos \left[2\left(\phi-\Psi_{R P}\right)\right]+\cdots \\
& v_{n}=\left\langle\cos \left[n\left(\phi_{i}-\Psi_{R P}\right)\right]\right\rangle
\end{aligned}
$$

Event plane resolution correction made for each harmonic Unfiltered theory can be compared to experiment!

FIG. 2. The rapidity dependence of the directed $\left(v_{1}\right)$ and el liptic (v_{2}) flow for the protons ($0.6<p_{t}<2.0 \mathrm{GeV} / c$) and pions ($0.05<p_{t}<0.35 \mathrm{GeV} / c$). The points below midrapidity $(y=2.92)$ have been reflected from the measurements in the forward hemisphere. The curves are to guide the eye.

Methods for analyzing anisotropic flow in relativistic nuclear collisions

A. M. Poskanzer ${ }^{1}$ and S. A. Voloshin ${ }^{2, *}$
${ }^{1}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
${ }^{2}$ Physikalisches Institut der Universität Heidelberg, Heidelberg, Germany
(Received 20 May 1998)

The strategy and techniques for analyzing anisotropic flow (directed, elliptic, etc.) in relativistic nuclear collisions are presented. The emphasis is on the use of the Fourier expansion of azimuthal distributions. We present formulas relevant for this approach, and in particular, show how the event multiplicity enters into the event plane resolution. We also discuss the role of nonflow correlations and a method for introducing flow into a simulation. [S0556-2813(98)04109-0]

[^0]
Flow proponent

Art: Flow proponent, advocate, supporter

Promoted and developed flow methods, codes, analyses, helped to test ALICE codes.
 Was happy to see how flow draws attention at the conferences

Notations, $v_{2}\{\mathrm{EP}\}$ FlowStyle in ROOT FlowEvent "little" q flow vector v_{2}^{2} / v_{4} physics

Elliptic flow centrality/energy dependence

The physics of the centrality dependence of elliptic flow

S.A. Voloshin ${ }^{\text {a,b }}$, A.M. Poskanzer ${ }^{\text {a }}$

${ }^{\text {a }}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
${ }^{\mathrm{b}}$ Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
Received 30 September 1999; received in revised form 13 December 1999; accepted 29 December 1999 Editor: J.-P. Blaizot

Fig. 3. Elliptic flow divided by the initial space elliptic anisotropy at the AGS (open circles) and the SPS (filled squares). The shaded area shows the uncertainty in the SPS experimental data due to the uncertainty in the centrality determination. See text and footnote for the description of the curves and hydro limits.

Elliptic flow centrality/energy dependence

The physics of the centrality dependence of elliptic flow

S.A. Voloshin ${ }^{\text {a,b }}$, A.M. Poskanzer ${ }^{\text {a }}$

${ }^{a}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ${ }^{\mathrm{b}}$ Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA Received 30 September 1999; received in revised form 13 December 1999; accepted 29 December 1999 Editor: J.-P. Blaizot

Fig. 3. Elliptic flow divided by the initial space elliptic anisotropy at the AGS (open circles) and the SPS (filled squares). The shaded area shows the uncertainty in the SPS experimental data due to the uncertainty in the centrality determination. See text and footnote for the description of the curves and hydro limits.

2-particle azimuthal correlations

> Results from data taken during the first three hours of RHIC operation

First observation of elliptic flow at RHIC (STAR)

For the first time in Heavy-Ion Collisions the flow measurements are in quantitative agreement with hydrodynamic model predictions up to mid-central collisions Dense and (likely) thermalized matter

Elliptic flow centrality/energy dependence

The physics of the centrality dependence of elliptic flow

S.A. Voloshin ${ }^{\text {a,b }}$, A.M. Poskanzer ${ }^{\text {a }}$

${ }^{a}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ${ }^{\mathrm{b}}$ Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA
Received 30 September 1999; received in revised form 13 December 1999; accepted 29 December 1999 Editor: J.-P. Blaizot

Fig. 3. Elliptic flow divided by the initial space elliptic anisotropy at the AGS (open circles) and the SPS (filled squares). The shaded area shows the uncertainty in the SPS experimental data due to the uncertainty in the centrality determination. See text and footnote for the description of the curves and hydro limits.

DIRECTED AND ELLIPTIC FLOW OF CHARGED PIONS .
PHYSICAL REVIEW C 68, 034903 (2003)

FIG. 25. (Color online) v_{2} / ϵ as a function of particle density. The v_{2} values are for near midrapidity $(0<y<0.6$ for $40 A \mathrm{GeV}$ and 0 $<y<0.8$ for 158 A GeV). The results of NA49 pion v_{2} are compared to charged particle v_{2} measured by E877 and STAR. The meaning of $<y<0.8$ for $158 A \mathrm{GeV}$. The results of NA49 pion v_{2} are compared to charged
the horizontal lines (hydro limits) and of the arrow will be discussed in Sec. VI.

QGP－The Perfect fluid

Universe May Have Begun as Liquid，Not Gas

Associated Press
Tuesday，April 19，2005；Page A05
©he Washington post

New results from a particle collider suggest that the universe behaved like a liquid in its earliest moments，not the fiery gas that was thought to have perva Early Universe was a liquid

Quark－gluon blob surprises particle physicists．

New State of Matter Is＇Nearly Perfect＇Liquid
Physicists working at Brookhaven National aboratory announced today that they have Laboratory announced today that hey have
created what appears to be a new state of matter out of the building blocks of atomic nuclei，quarks and gluons．The researchers unveiled their findings－－which could provide new insight into the composition of the universe just moments after the big bang－－today in Florida at a meeting of the American Physical Society．SCIENTIFIC
There are four collaborations，dubbed BRAHMS PHENIX，PHOBOS and STAR，working at Brookhaven＇s Relativistic Ceavy lon Colilider
（RHIC）．All of them study what happens when two interacting beam of gold ions smash into interacting beams of gold ions smash into one another at great velocities，resulting in thousands of subatomic collisions every second．When
the researchers analyzed the pattorns of the atoms

by Mark Peplow
The Universe consisted of a perfect liquid in its first momel results from an atom－smashing experiment．

Early Universe was＇liquid－like
Physicists say they have
created a new state of hot， created a new state of hot，
dense matter by crashing dense matter by crashing atoms．B｜B｜CNEWS

The high－energy collisions prised open the nuclei to reveal their most basic particles，known as quarks and gluons．
The researchers，at the US Brookhaven National Laboratory，say these particles ＂宙の始まりはしずく？「クオークは液」と発表

Early Universe Went With the Flow

Posted April 18， 2005 5：57PM
Between 2000 and 2003 the lab＇s Relativistic Heavy Ion Collider repeatedly smashed the nuclei of gold atoms together with such force that their energy briefly generated trillion－degree temperatures． Physicists think of the collider as a time machine，because those extreme temperature conditions last prevailed
100 millionths of a second after the big bang．

ly Universe Liquid－Like

\qquad
 amon wimonid ${ }^{24 t} 65$ cta

Whatsin
a name？

Physicists agreeth

QGP－The Perfect fluid

Universe May Have Begun as Liquid，Not Gas

Associated Press
Tuesday，April 19，2005；Page A05

New State of Matter Is＇Nearly Perfect＇Liquid
Physicists working at Brookhaven National aboratory announced today that they have created what appears to be a new state of matter out of the building blocks of atomic nuclei，quarks and gluons．The researchers unveiled their findings－－which could provide new insight into the composition of the universe just moments after the big bang－－today in Florida at a meeting of the American Physical Society

There are four collaborations AMERICAN PHFNIX four collaborations，dubbed BRAHMS PHENIX，PHOBOS and STAR，working at Brookhaven＇s Relativistic Ceavy on Colider
（RHIC）．All of them study what happens when two interacting beams of gold ions smash into one interacting beams of gold ions smash into one another at great velocities，resultitig in thousands of subatomic collisions every second．When
the researchers analyzed the pattorns nf tho atoms＇traiontorios after thoserglisions thoy

asahi．comトッブ＞社会＞その他•話选

宙の始まりはしずく？「クオークは液
」と発表

Physicists say they hav，
created a new state of hot， dense matter by crashing together the nuclei of gold atoms．B｜B｜CNEWS

The high－energy collisions prised open the nuclei to reveal their most basic particles，known as quarks and gluons．
The researchers，at the US Brookhaven National Laboratory，say these particles

Early Universe Went With the Flow

Posted April 18， 2005 5：57PM
Between 2000 and 2003 the lab＇s Relativistic Heavy Ion Collider repeatedly smashed the nuclei of gold atoms together with such force that their energy briefly generated trillion－degree temperatures． Physicists think of the collider as a time machine，because those
extreme temperature conditions last prevailed in the universe less than extreme temperature conditions last prevailed
100 millionths of a second after the big bang．

ly Universe Liquid－Like

 antmom nature eremy iessac Priv
\qquad $5=$ Evab

tio 3 sum
 $y=4$

宇宙誕生の大爆発「ビッグバン」直後に相当する超高温•高密度状態を再現する実験をしてきた日米などの国際チームは18日，質を形づくる究極の基本粒子クオークは超高温でバラバラになる に気体のように自由に跳び回る由や物質のなりたちを説明する

Energy dependence: AGS-SPS-RHIC-LHC

version 7, November 7, 2010. Text: new, old, question

Elliptic flow of charged particles in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$
de M. Michel Nostradamus
We report the first measurement of charged particle elliptic flow in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=$,
276 TeV with the ALICE detector at the CERN Large Hadron Collider 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement $0.25<p_{\mathrm{t}}<5 \mathrm{GeV} / c$. The elliptic flow signal, v_{2}, averaged over transverse momentum and pseudorapidity, reaches values of 0.085 for relatively peripheral collisions ($40-50 \%$ most central). The differential elliptic flow $v_{2}\left(p_{t}\right)$ reaches a maximum of 0.25 around $p_{t}=3 \mathrm{GeV} / c$. Compared to RHIC Au + Au collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, the elliptic flow increases by about 15% in agreement with hydrodynamical model predictions.

Thu Oct 28 21:58:27 2010
FIG. 4. Integrated elliptic flow in $\mathrm{Pb}+\mathrm{Pb} 20-30 \%$ centrality collisions at 2.76 TeV compared with results from lower energies taken at similar centralities. The compilation is taken from [26].

Energy dependence: AGS-SPS-RHIC-LHC

Elliptic flow of charged particles in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$
de M. Michel Nostradamus
We report the first measurement of charged particle elliptic flow in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=$,
2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement $0.25<p_{\mathrm{t}}<5 \mathrm{GeV} / c$. The elliptic flow signal, v_{2}, averaged over transverse momentum and pseudorapidity, reaches values of 0.085 for relatively peripheral collisions ($40-50 \%$ most central). The differential elliptic flow $v_{2}\left(p_{t}\right)$ reaches a maximum of 0.25 around $p_{t}=3 \mathrm{GeV} / c$. Compared to RHIC Au+Au collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, the elliptic flow increases by about 15% in agreemen with hydrodynamical model predictions.

Thu Oct 28 21:58:27 2010
FIG. 4. Integrated elliptic flow in $\mathrm{Pb}+\mathrm{Pb} 20-30 \%$ centrality collisions at 2.76 TeV compared with results from lower energies taken at similar centralities. The compilation is taken from [26].

Plol Selected for a Viewpoint in Physics
PRL 105, 252302 (2010)
PHYSICAL REVIEW
$7 \begin{aligned} & \text { week ending } \\ & \text { DECEMBER } \\ & 2010\end{aligned}$
Elliptic Flow of Charged Particles in Pb-Pb Collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$
K. Aamodt et al. ${ }^{*}$
(ALICE Collaboration)
(Received 18 November 2010; published 13 December 2010)
We report the first measurement of charged particle elliptic flow in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=$ 2.76 TeV with the ALIICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region $(|\eta|<0.8)$ and transverse momentum range $0.2<p_{t}<5.0 \mathrm{GeV} / c$.
The elliptic flow signal v_{2}, measured using the 4 -particle correlation method, averaged over transverse The elliptic flow signal v_{2}, measured using the 4 -particle correlation method, averaged over transverse
momentum and pseuddorapidity is 0.087 ± 0.002 (stat) ± 0.003 (syst) in the 40% - 50% centrality class. The momentum and pseudorapidity is 0.087 ± 0.002 (stat) ± 0.003 (syst) in the 40% - 50% centrality class. The
differential elliptic flow $v_{2}\left(p_{t}\right.$) reaches a maximum of 0.2 near $p_{t}=3 \mathrm{GeV} / c$. Compared to RHIC Au-A differential elliptic flow $v_{2}\left(p_{p}\right)$ reaches a maximum of 0.2 near $p_{t}=3 \mathrm{GeV} / c$. Compared to RHIC Au-A
collisions at $\sqrt{s_{v V}}=200 \mathrm{GeV}$, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.
DOI: 10.1103/PhysRevLett. 105.252302
PACS numbers: 25.75.Ld, 25.75.Gz, 25.75.N

FIG. 4 (color online). Integrated elliptic flow at 2.76 TeV in $\mathrm{Pb}-\mathrm{Pb} 20 \%-30 \%$ centrality class compared with results from lower energies taken at similar centralities [40,43].

Energy dependence: AGS-SPS-RHIC-LHC

Elliptic flow of charged particles in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$
de M. Michel Nostradamus
We report the first measurement of charged particle elliptic flow in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=$
2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement $0.25<p_{\mathrm{t}}<5 \mathrm{GeV} / c$. The elliptic flow signal, v_{2}, averaged over transverse momentum and pseudorapidity, reaches values of 0.085 for relatively peripheral collisions ($40-50 \%$ most central). The differential elliptic flow $v_{2}\left(p_{t}\right)$ reaches a maximum of 0.25 around $p_{t}=3 \mathrm{GeV} / c$. Compared to RHIC Au+Au collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, the elliptic flow increases by about 15% in agreemen with hydrodynamical model predictions.

Thu Oct 28 21:58:27 2010
FIG. 4. Integrated elliptic flow in $\mathrm{Pb}+\mathrm{Pb} 20-30 \%$ centrality collisions at 2.76 TeV compared with results from lower energies taken at similar centralities. The compilation is taken from [26].

PRL 105, 252302 (2010) Pr Selected for a Viewpoint in Physics
Elliptic Flow of Charged Particles in Pb-Pb Collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$
K. Aamodt et al.*
(ALICE Collaboration)
(Received 18 November 2010; published 13 December 2010)
We report the first measurement of charged particle elliptic flow in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=$ 2.76 TeV with the e AIICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region $(\backslash \eta \mid<0.8)$ and transverse momentum range $0.2<p_{<}<5.0 \mathrm{GeV} / \mathrm{c}$.
The elliptic flow signal v, measured using the 4 -particle correlation method, averaged over transvers The elliptic flow signal v_{2}, measured using the 4 -particle correlation method, averaged over transverse
momentum and pseudorapidity is 0.087 ± 0.002 (stat) ± 0.003 (syst) in the $40 \%-50 \%$ centrality class. The momentum and pseudorapidity is 0.087 ± 0.002 (stat) ± 0.003 (syst) in the $40 \%-50 \%$ centrality class.
differential elliptic flow $v_{2}\left(p_{t}\right.$) reaches a maximum of 0.2 near $p_{t}=3 \mathrm{GeV} / \mathrm{c}$. Compared to RHIC Au-A differential elliptic flow $v_{2}\left(p_{t}\right)$ reaches a maximum of 0.2 near $p_{t}=3 \mathrm{GeV} / c$. Compared to RHIC Au-A
collisions at $\sqrt{s_{\nu N}}=200 \mathrm{GeV}$, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.
DOI: 10.1103/PhysRevLett. 105.252302
PACS numbers: 25.75.Ld, 25.75.Gz, 25.75.N

FIG. 4 (color online). Integrated elliptic flow at 2.76 TeV in $\mathrm{Pb}-\mathrm{Pb} 20 \%-30 \%$ centrality class compared with results from lower energies taken at similar centralities [40,43].

Constituent quark scaling

Quark coalescence?

Constituent quark scaling

Quark coalescence?

Constituent quark model + coalescence

coalescence	fragmentation
Low p_{+}quarks	High p_{+}quarks
Coalescence in the intermediate region (rare products):	

- What is the centrality dependence of the effect?

21 -quark $_{2002}$ Nantes, July 25, $2002 \quad$ S.A. Voloshin | WAYNE STATE |
| :---: |
| UNINERSTY 2 |

Quarks flow - deconfinement

v_{2} and v_{4}

PHYSICAL REVIEW C 72, 014904 (2005)
Azimuthal anisotropy in Au+Au collisions at $\sqrt{s_{N N}}=200 \mathbf{~ G e V}$

Physical Review C50 ${ }^{\text {th }}$ Anniversary Milestones
50
PHYSICAL
REVIEW C

Mass, quark-number, and $\sqrt{s_{N N}}$ dependence of the second and fourth flow harmonics in ultrarelativistic nucleus-nucleus collisions

NCQ scaling in nonlinear flow modes

Non-linear flow modes of identified particles in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$

ALICE

The ALICE collaboration

Figure 10. The $p_{\mathrm{T}} / n_{q^{-}}$-dependence of $v_{4,22} / n_{q}$ for different particle species grouped into different centrality intervals of $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

FIG. 22. (Color online) Nonflow azimuthal correlations from Eq. (16), for the first, g_{1}, (bottom) and second, g_{2}, (top) Fourier harmonics, from $158 A \mathrm{GeV}$ (left) and $40 A \mathrm{GeV}$ (right) $\mathrm{Pb}+\mathrm{Pb}$ collisions. For g_{1}, the solid points represent all nonflow effects, while the open points are corrected for momentum conservation. The horizontal lines are at the mean values.

$$
\checkmark \quad\left\langle v_{2}^{2}\right\rangle=\left\langle v_{2}\right\rangle^{2}+\sigma_{v_{2}}^{2}+g_{2} / N
$$

FIG. 31. (Color online) The nonflow parameter, g_{2}, as a function of centrality. The solid points are from the cumulant method. The open circles are from the q distribution method.

Radial expansion \rightarrow nonflow

[arXiv:nucl-th/0312065]

Radial expansion \rightarrow nonflow

D. Magestro (STAR)

IG. 2: The width of the balance function for charged par cles, $\langle\Delta \eta\rangle$, as a function of normalized impact parameter $/ b_{\max }$). Error bars shown are statistical. The width of he balance function from HIJING events is shown as a band hose height reflects the statistical uncertainty. Also shown re the widths from the shuffled pseudorapidity events.

B. I. Abelev et al.[STAR Collaboration], Phys.

Radial expansion \rightarrow nonflow, cont'd

S.A. Voloshin / Physics Letters B 632 (2006) 490-494

> Fig. 3. (Color online.) Two pion $\Delta \phi$ distribution as function of $\left\langle\rho_{t}^{2}\right\rangle$ in the blast wave model. Linear velocity profile and $T=110 \mathrm{MeV}$ have been assumed. The average values of $\cos (\Delta \phi)$ and $\cos (2 \Delta \phi)$ for the distribution shown in Fig. 3.

!!! - the large values of transverse flow, $\rho_{\mathrm{t}}{ }^{2}>0.25$, would contradict "non-flow" estimates in elliptic flow measurements

FIG. 31. (Color online) The nonflow parameter, g_{2}, as a function of centrality. The solid points are from the cumulant method. The open circles are from the q distribution method.

Flow fluctuations

Fig. 1. The definitions of the $R P$ and $P P$ coordinate systems.

Flow fluctuations

Fig. 1. The definitions of the $R P$ and $P P$ coordinate systems.

$$
\left\langle v_{2}^{2}\right\rangle=\left\langle v_{2}\right\rangle^{2}+\sigma_{v_{2}}^{2}+g_{2} / N
$$

The difference between two-particle and manyparticle correlation results are due to flow fluctuations and nonflow.
$\varepsilon=\frac{\left\langle y^{2}-x^{2}\right\rangle}{\left\langle y^{2}+x^{2}\right\rangle}$

The difference between v2[2] qnd $\mathrm{v} 2[4\}$ is almost fully saturated by eccentricity fluctuations according to nucleon participant Glauber MC.

Flow fluctuations = nonflow (radial expansion)

$$
\begin{array}{|l}
\left.\begin{array}{l}
v_{n}\{R P\} \\
v_{n}\{P P\}
\end{array}\right] \text { - "hot spots" correlations = nonflow "participant planes" - "hot spot" correlations } \\
\text { = part of flow fluctuations }
\end{array}
$$

Stationary and expanding sources

$$
\begin{aligned}
& \text { Rotation of the coordinate system: } \\
& \left\langle\left\langle x_{\text {side }}^{2}\right\rangle=\left\langle x^{2}\right\rangle \sin ^{2} \phi+\left\langle y^{2}\right\rangle \cos ^{2} \phi-\langle x y\rangle \sin 2 \phi\right.
\end{aligned}
$$

Stationary source:

no higher order anisotropy in the Gaussian approximation 4-th harmonic modulations appears only in $\left\langle x^{4}\right\rangle$
3-rd harmonic modulations appears only in $\left\langle x^{6}\right\rangle$

$$
R_{\text {long }} \propto \frac{v_{\text {therm }}}{d v_{z} / d z}
$$

Can the collective expansion lead to nontrivial $R(\phi)$ dependence? Yes, due to several effects:

- variation in the "blast wave" velocity
- variation in velocity gradients in "side" direction

Observation of the higher harmonics in azimuthat dependence of femtoscopic radii could originate only in the collective expansion of the source

ALICE, third harmonic HBT

ALICE Collaboration / Physics Letters B 785 (2018) 320-331

- $0.2<k_{\mathrm{T}}<0.3 \mathrm{GeV} / \mathrm{C}$
- $0.3<k_{\mathrm{T}}<0.4 \mathrm{GeV} / \mathrm{c}$
$\pm 0.4<k_{\mathrm{T}}<0.5 \mathrm{GeV} / \mathrm{c}$
- $0.5<k_{\mathrm{T}}<0.7 \mathrm{GeV} / \mathrm{C}$
to the results from 3+1D hydrodynamical calculations. The observed radii oscillations unambiguously signal a collective expansion and anisotropy in the velocity fields. A comparison of the measured radi oscillations with the Blast-Wave model calculations indicate that the initial state triangularity is washedout at freeze out

Fig. 5. Blast-Wave model [16] source parameters, final spatial $\left(a_{3}\right)$ and transverse flow (ρ_{3}) anisotropies, for different centrality ranges, as obtained from the fit to ALICE radii oscillation parameters. The contours represent the one sigma uncertainty.

This results unambiguously indicate collective expansion of the source as no any other "evidence",

Anisotropic flow and vorticity

$$
\omega=\frac{1}{2} \nabla \times \mathbf{v}
$$

Anisotropic flow and vorticity

$$
\omega=\frac{1}{2} \nabla \times \mathbf{v}
$$

Barnett effect

THE
PHYSICAL REVIEW.

MAGNETIZATION BY ROTATION. ${ }^{1}$

by S. J. barnett
§I. In 1909 it occurred to me, while thinking about the origin of terrestrial magnetism, that a substance which is magnetic (and therefore, according to the ideas of Langevin and others, constituted of atomic or molecular orbital systems with individual magnetic moments fixed in magnitude and differing in this from zero) must become magnetized in magnitude and difering in this fom

Fig. 2-1.

$$
P \approx \omega /(2 T)
$$

$\left\langle P_{z} \sin \left[n\left(\phi_{H}-\Psi_{n}\right)\right]\right\rangle$

Using average over Ru+Ru and $\mathrm{Zr}+\mathrm{Zr}$
Assuming the same polarization for Λ and $\bar{\Lambda}$

Summary

Art: physics, inspiration, and much more

Flow, as a truly ideal fluid, has interpenetrated all parts of heavy ion physics, it brings new discoveries and contributes greatly to our understanding of strongly interacting matter.

We are grateful to Art, who made it works.

EXTRA SLIDES

FIG. 22. (Color online) Graphs of v_{n} and v_{4} / v_{2}^{2}. The dashed lines are surface shell blastwave fits with no ρ_{4} or s_{4} terms (see Sec. VID) to the charged hadron v_{2} minimum bias data. The resultant ratio v_{4} / v_{2}^{2} is shown as the lower dashed line in the ratio graph (b). The solid lines are the fits with the addition of ρ_{4} and s_{4}. The resultant ratio v_{4} / v_{2}^{2} is shown as the solid curve in the ratio graph (b). The dotted line in the ratio graph (b) at 1.2 represents the average value of the data.

$$
N \cdot\left(v_{n}\{2\}^{2}-v_{n}\{k\}^{2}\right)=g_{n}
$$

FIG. 22. (Color online) Nonflow azimuthal correlations from Eq. (16), for the first, g_{1}, (bottom) and second, g_{2}, (top) Fourier harmonics, from $158 A \mathrm{GeV}$ (left) and $40 A \mathrm{GeV}$ (right) $\mathrm{Pb}+\mathrm{Pb}$ collisions. For g_{1}, the solid points represent all nonflow effects, while the open points are corrected for momentum conservation. The horizontal lines are at the mean values.

Q-vector products and multiparticle

 correlations$$
\begin{aligned}
& \mathrm{u}=\mathrm{e}^{\mathrm{if}} ; \quad \mathrm{Q}=\sum \mathrm{u} ; \quad \mathrm{Q}_{2}=\sum \mathrm{u}^{2} \\
& \left\langle u_{i} u_{j}^{*}\right\rangle=\left\langle\frac{1}{N(N-1)}\left(Q^{*}-N\right)\right\rangle \\
& \left\langle u_{1} u_{j} u_{k}^{*}\right\rangle=\left\langle\frac{1}{N(N-1)(N-2)}\left[\left(Q^{2} Q_{2}^{*}-N\right)-\left(Q_{2} Q_{2}^{*}-N\right)-2\left(Q^{*}-N\right)\right]\right\rangle \\
& \left\langle u_{i} u_{j} u_{k}^{*} u_{1}^{*}\right\rangle=\left\langle\frac { 1 } { N (N - 1) (N - 2) (N - 3) } \left[\left(Q^{2} Q^{* 2}-N\right)-2 N(N-1)\right.\right. \\
& \left.-4(N-2)\left(Q^{*}-N\right)-2\left(Q^{2} Q_{2}^{*}-N\right)+\left(Q_{2} Q_{2}^{*}-N\right)\right]
\end{aligned}
$$

the beginning

FIG. 6. (Color online) Elliptic flow obtained from the standard method as a function of rapidity (top) and transverse momentum (bottom) for charged pions (left) and protons (right) from $158 \mathrm{~A} \mathrm{GeV} \mathrm{Pb}+\mathrm{Pb}$. Three centrality bins are shown. The open points in the top graphs have been reflected about midrapidity. Solid lines are polynomial fits (top) and blast wave model fits (bottom)

[^0]: Citations: Google Scholar/inSPIRE 2157/1410

