ePIC tracking performance

Wenqing Fan and Beatrice Liang-Gilman

10/11/2022, LBNL

ePIC tracking geometry

- Current setup: ePIC tracking geometry + 1.7T field
 - B field is scaled up from BarBar field map (1.5T to 1.7T)
 - PIC geometry material map added by Shujie
- Performance test: check if the current geometry + track reconstruction algorithm gives resonable performance
 - * Single pion events: uniform p_T , ϕ , η distribution (p range: 0 to 30GeV, η range: -3.5 to 3.5)
 - Track reconstruction with truth seeding

$p vs \eta$ distribution

Sanity check: if the generated particles covers the expected phase space and reconstructed particles covers similar phase space

Momentum resolution (DD4HEP vs fast simulation)

Momentum resolution (DD4HEP vs fast simulation)

Momentum resolution (DD4HEP vs fast simulation)

Results from DD4HEP in agreement with the fast simulation results

YR requirement achieved for most of the η range

Acceptance check

- Efficiency with truth seeding
 - No minimum # of hits required now (later we can add >=3 hits)
 - Need to make finer η bins and simulate large η range to check the edge effect around the inner radius of the disks

Summary

- Track reconstruction perform mostly as expected in DD4HEP with the material map
 - Full simulation results in agreement with fast simulation
- Write more tracking information to the reconstructed output (# of hits, χ^2 etc.)
 - Beneficial for acceptance study, diagnotic purposes etc.
- Check realistic seeding