

Hypernuclei production in Au+Au collisions at 3 GeV

Yuanjing Ji 10/20/2022

RNC Group Meeting

Motivation

- Hypernuclei introduce hyperon degree of freedom
 - Investigate hyperon-nucleon (Y-N) interaction.
 - Important ingredient for the nuclear equation of state.
- Hypernuclei measurements in Au+Au collisions at 3 GeV $^{3}_{\Lambda}H \rightarrow ^{3}He \pi^{-} \sim B.R. 15-25\%, ^{3}_{\Lambda}H \rightarrow pd\pi^{-} \sim B.R. 40-50\%.$ $^{4}_{\Lambda}H \rightarrow ^{4}He \pi^{-} \sim B.R. 50\%.$

 $^{3}_{\Lambda}H \rightarrow {}^{3}He\pi, {}^{4}_{\Lambda}H \rightarrow {}^{4}He \pi^{-}$: STAR, PRL 128, 202301 (2022)

- $^{3}_{\Lambda}$ H decay branching ratio
 - Recent calculation: R_3 sensitive to B_Λ
 - B_{Λ} -> directed constraints on Y-N interaction strength
 - An input for model calculation on $^3_\Lambda H$ lifetime

Strangeness population factor

S. Zhang et al, PLB 684, 224 (2010)

$$S_A = \frac{{}^{A}_{\Lambda}H}{{}^{A}_{He} \times \frac{\Lambda}{p}} = \frac{B_A({}^{A}_{\Lambda}H)(p_T)}{B_A({}^{A}_{He})(p_T)}$$

$$E_{A} \frac{\mathrm{d}^{3} N_{A}}{\mathrm{d} p_{A}^{3}} = B_{A} \left(E_{\mathrm{p,n}} \frac{\mathrm{d}^{3} N_{\mathrm{p,n}}}{\mathrm{d} p_{\mathrm{p,n}}^{3}} \right)^{A} \Big|_{\vec{p}_{\mathrm{p}} = \vec{p}_{\mathrm{n}} = \frac{\vec{p}_{A}}{A}}$$

Coalescence parameters

- Understanding *Y-N* interaction and hypernuclei production mechanism in heavy-ion collisions
 - Direct connected to the ratio of the light and hyper nuclei coalescence parameters.
 - In thermal model, S_A does not depend on the chemical potential of the particles and cancel canonical correction factors for strangeness.

$^{3}_{\Lambda}H \rightarrow pd\pi^{-}$ reconstruction

- $^{3}_{\Lambda}H \rightarrow dp\pi^{-}$, B.R. ~ 40-50%
- $^{3}_{\Lambda}$ H binding energy
 - $B_{\Lambda} = \left(M_{\Lambda} + M_d M_{\frac{3}{\Lambda}H}\right)c^2 \sim 0.2 \text{ MeV}$
 - Weakly bound system
- Combinatorial background
 - Mixed event method.
 - Random combination of $d + p + \pi$ and uncorrelated $\Lambda + d$.
- Signals contain real ${}^3_{\Lambda}$ H signal and kinematically correlated $\Lambda + d$ ($\Lambda \rightarrow p\pi^-$).

$^{3}_{\Lambda}H \rightarrow pd\pi^{-}$ reconstruction

- $^{3}_{\Lambda}H \rightarrow dp\pi^{-}$, B.R. ~ 40-50%
- $^{3}_{\Lambda}$ H binding energy
 - $B_{\Lambda} = \left(M_{\Lambda} + M_d M_{\frac{3}{\Lambda}H}\right)c^2 \sim 0.2 \text{ MeV}$
 - Weakly bound system
- Combinatorial background
 - Mixed event method.
 - Random combination of $d + p + \pi$ and uncorrelated $\Lambda + d$.
- Signals contain real ${}^3_{\Lambda}$ H signal and kinematically correlated $\Lambda + d$ ($\Lambda \rightarrow p\pi^-$).

6

$^{3}_{\Lambda}H \rightarrow pd\pi^{-}$ reconstruction

- $^{3}_{\Lambda}H \rightarrow dp\pi^{-}$, B.R. ~ 40-50%
- $^{3}_{\Lambda}$ H binding energy
 - $B_{\Lambda} = \left(M_{\Lambda} + M_d M_{\frac{3}{\Lambda}H}\right)c^2 \sim 0.2 \text{ MeV}$
 - Weakly bound system
- Combinatorial background
 - Mixed event method.
 - Random combination of $d + p + \pi$ and uncorrelated $\Lambda + d$.
- Signals contain real ${}^3_{\Lambda}$ H signal and kinematically correlated $\Lambda + d$ ($\Lambda \rightarrow p\pi^-$).

Correlated Λd contamination in ${}^{3}_{\Lambda}H$ signal

• Λd may have kinematic correlations according to theory calculation.

 $C(k^*) = \frac{P(\Lambda d)}{P(\Lambda)P(d)}$, p is the possibility of finding particle No correlation -> $C(k^*)=1$ k^* -> relative momentum between Λ and d

PRC 102, 034001 (2020) 20 — 2S (Cobis) 18 — 2S + 4S (E) — 2S + 4S (f) singlet + triplet 16 — 2S + 4S (A) 14 12 ¥ 10 $R = 2.5 \, \text{fm}$ 8 6 4 singlet 25 50 75 100 125 150 0

k (MeV/c)

When k*=0, in Λ and d pair CMS framework:

$$p_{\Lambda} = -p_{d} = 0$$

$$\Lambda : (p_{\Lambda}, E_{\Lambda}) = (0, m_{\Lambda})$$

$$d : (p_{d}, E_{d}) = (0, m_{d})$$

$$-> (\Lambda d) : (p_{\Lambda} + p_{d}, E_{\Lambda} + E_{d}) = (0, m_{\Lambda} + m_{d})$$

Correlated Λd contamination in ${}^{3}_{\Lambda}H$ signal

- Λd may have kinematic correlations according to theory calculation.
- When $\Lambda d C(k^*) > 1$ at $k^* > 0$, peak structure is formed near $M(\Lambda) + M(d)$ threshold.
 - $M(\Lambda) + M(d) \sim 2.9913 \text{ GeV/c}^2$, $M(^3_{\Lambda}\text{H}) \sim 2.991 \text{ GeV/c}^2$ ($B_{\Lambda} \sim 0.1 0.4 \text{ MeV}$).
 - Mass resolution of H3L in the data $\sim 1.5~\text{MeV/}c^2$.
 - Challenge to separate two peaks.

$^{3}_{\Lambda}H \rightarrow pd\pi^{-}$ purity estimation

- Challenge to separate Λd and ${}^{3}_{\Lambda}H$ in invariant mass?
- χ^2_{NDF} : variable to estimate whether tracks intersect
 - Different χ^2_{NDF} distributions for Λd and $^3_{\Lambda}{
 m H}$
- Template fit method to estimate $^{3}_{\Lambda}$ H purity statistically.

•
$$\chi^2_{NDF_{Data}} = p_0 \cdot (\chi^2_{NDF_{\Lambda d}} + p_1 \cdot \chi^2_{NDF_{\Lambda}^3H})$$

 $\frac{d}{\Lambda} \qquad p \qquad \frac{3}{\Lambda}H \qquad p \qquad \pi$

Daughter tracks from different vertex

Daughter tracks from same vertex

$^{3}_{\Lambda}H \rightarrow pd\pi^{-}$ efficiency and purity correction

- Reconstruction efficiency
 - Weighted $p_{\scriptscriptstyle T}$ and rapidity, lifetime

 $\epsilon_{reco} = \frac{\text{Reconstructed H3L after topological cuts}}{\text{MC H3L}}$

• Corrected yields of $^{3}_{\Lambda}$ H via 3 body decay

- Efficiency also reflecting detector acceptance
 - 3-body channel has best acceptance at y~-0.5 in 3 GeV
- No obvious rapidity of H3L purity

$^{3}_{\Lambda}$ H branching ratio R_{3}

Improved precision on R_3 .

- Stronger constraints on absolute B.R. and hypertriton internal structure.
- Updated world average value favors model calculation with small $^{3}_{\Lambda}$ H binding energy.

H3L->dp π spectra

- Combine two decay channel to extend kinematic coverage.
 - In FXT mode, H3L->dp π has better coverage in backward rapidity while ${}^{3}_{\Lambda}H \rightarrow {}^{3}He\pi^{-}$ performaces better in mid rapidity.

dN/dy as a function of rapidity

• Coalescence calculation with tuned parameters are able to describe the trend of ${}_{\Lambda}^{4}$ H yields versus rapidity but fail for ${}_{\Lambda}^{3}$ H at 10-50% centrality.

Hyper to light nuclei yields ratio

- Suppression of ${}^{3}_{\Lambda}$ H/ 3 He yield ratios compared to that of Λ/p is observed at both 0-10% and 10-40% centrality in Au+Au collisions at 3 GeV.
- The ${}^{4}_{\Lambda}H/{}^{4}He$ yield ratios are comparable to that of Λ/p , which is possibly due to feed-down from exited state enhances ${}^{4}_{\Lambda}H$ production.

$S_{3,4}$ as a function of p_T

Strangeness population factor

$$S_A = \frac{\frac{A_H}{\Lambda H}}{\frac{A_H}{R} + \frac{\Lambda}{p}}$$

- No obvious kinematic and centrality dependence of S_A is observed at 3 GeV.
- Evidence that coalescence parameter B_A of light and hyper nuclei follow similar tendency versus p_T, rapidity and centrality.

 $S_{3,4}$ versus rapidity at $p_T/A > 0.4$ GeV/c

 No obvious rapidity and centrality dependence of S_A (p_T/A>0.4 GeV/c) is observed at 3 GeV.

Conclusion

- Production of hypertriton are measured via (both) 3-body decay (and 2-body) channel, and branching ratio R₃ are reported.
- Suppression of ${}^{3}_{\Lambda}$ H/ 3 He yield ratios compared to that of Λ/p is observed at both 0-10% and 10-40% centrality in Au+Au collisions at 3 GeV.
- The ${}^{4}_{\Lambda}H/{}^{4}He$ yield ratios are comparable to that of Λ/p , which is possibly due to feed-down from exited state enhances ${}^{4}_{\Lambda}H$ production.
- No obvious kinematic and centrality dependence of S_A is observed at 3 GeV.
 - Evidence that coalescence parameter B_A of light and hyper nuclei follow similar tendency versus p_T , rapidity and centrality.