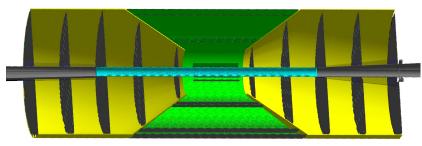


EIC Silicon Tracker R&D

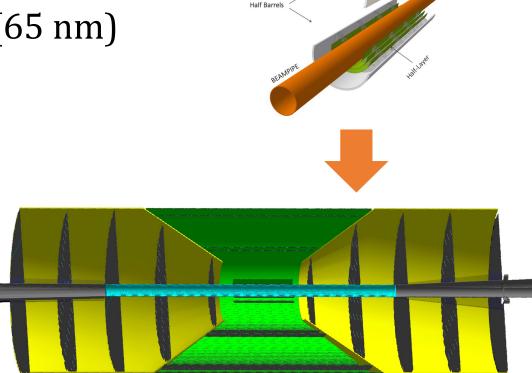

Nikki Apadula RNC Group Meeting June 23, 2022

EIC Detector: Tracking Requirements

- Wide kinematic coverage
- Good momentum resolution
- High-precision primary vertex determination
- Secondary vertex separation capability
- Needs detector with:
 - high granularity & low material budget

R&D Predecessors: eRD16 & 25 → MAPS technology chosen

All-Silicon Tracking Detector example: arXiv:2102.08337


Towards an EIC Detector 1 Concept

Based on ALICE ITS3 sensor technology (65 nm)

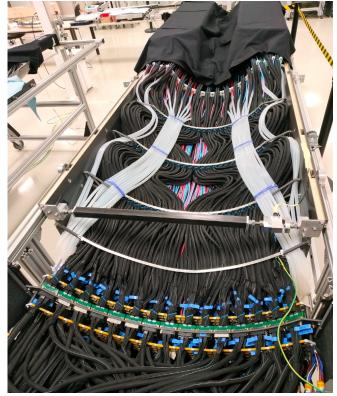
- 3 innermost layers (vertexing)
- 2-3 intermediate layers (sagitta)
- 4-6 silicon discs (forward & backward)

ALICE ITS3 ~0.12 m², EIC silicon ~10 m²

- \circ $\,$ Wafer-scale not suitable for staves & discs
- o Forked sensor design → optimize for large area coverage & yield

Cylindrical Structural Shell

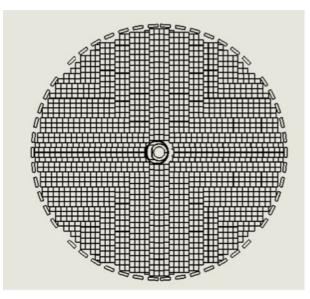
Current EIC Tracking R&D


• eRD104: Services reduction

- Powering & readout
- eRD111: Forming modules from stitched sensors
 - Optimizing the module size & design to meet mechanical requirements and take advantage of the new sensor design
- eRD111: Staves & Discs
 - Conceptual designs
- eRD111: Mechanics, integration, & cooling
 - Support structures, study of air cooling

R&D: Material Budget

- Mass minimization is key, especially in electron-going (backward) direction
 - Base design:
 - 0.24% X/X₀ per layer for discs
 - $0.55\% \text{ X/X}_0$ for staves
- eRD104
 - Power & data services reduction
- eRD111
 - Staves & Discs layout options, air cooling



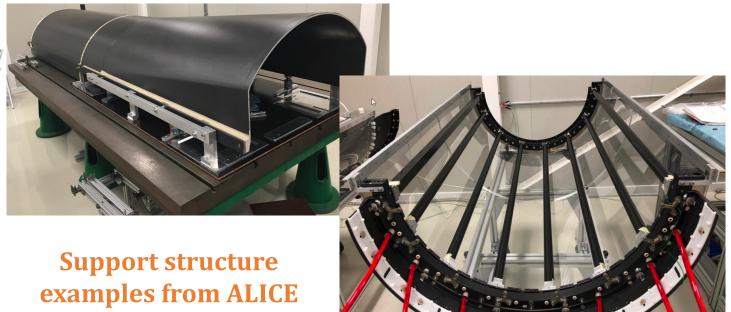
eRD111 Overall Plan

- Forming modules from stitched sensors (INFN Trieste, INFN Bari, Daresbury, Lancaster, Liverpool, Birmingham)
 - Options & optimizations
- Stave & disc construction (LBNL, LANL)
 - Conceptual design options
 - Cooling studies
- Additional infrastructure including mechanics & cooling (LBNL, LANL, JLAB)
 - Up-to-date CAD models
 - Conceptual designs

eRD111: Staves & Discs

- Disc concept \rightarrow Flexible & challenging
 - Plates, staves, etc.
 - Different disc diameters
 - Different inner hole openings
- Stave concepts
 - Truss, I-beam
- Iteration with module group
 - Module sizes/options
 - Buildability & tooling

Air cooling options will be studied for both


eRD111: Mechanics/Integration

• Detector mechanical structure & assembly/insertion mechanisms

ITS₂

- Iterate with overall project needs/constraints
- CAD models

eRD111: Milestones

New milestone dates (to be verified, estimates are my own) Based on start date of June 1, 2022

Milestone Description	Date
Report on baseline stave designs	10/2022
Report on baseline disc designs	12/2022
Report on simple disc & stave models	06/2023
Up-to-date silicon tracking CAD models	12/2022
Report on mechanics conceptual design	01/2023
FY22 R&D report	03/2023

• LBNL is planning to work on stave/disc construction & additional infrastructure (mechanics & cooling) from the eRD111 plan

eRD111: Time

• To meet these milestones, LBNL has requested money to cover engineer & technician time, as well as for materials

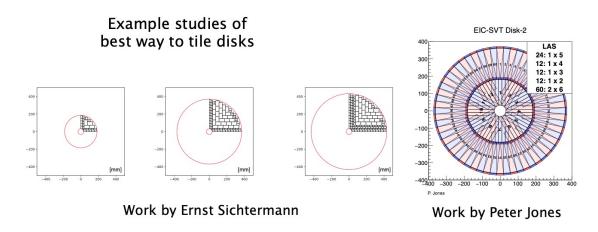
	Engineer	Technician	Staff	Postdoc	Student
Hours	480	220	800	780	200

• Time split between ~2 staff, ~2 postdocs

eRD111: Stave Designs

Milestone Description	Date
 Report on baseline stave designs Stiffness & vibrational requirements for staves & discs Examine stave options (ITS like, I-beam, etc.) Develop options based on potential reticle sizes 	10/2022

- Stiffness & vibrational requirements
 - What has been studied by ITS3 already? What do we know from our own simulations?
- Stave options
 - ITS-like (truss), I-beam (ATLAS), something else?
 - Benefits & drawbacks (material budget, stiffness, etc.). Information gathering
- Stave configurations based on likely reticle size
 - Layout options to meet the lengths (being discussed for Detector 1. Up to 60 cm?)



eRD111: Disc Designs

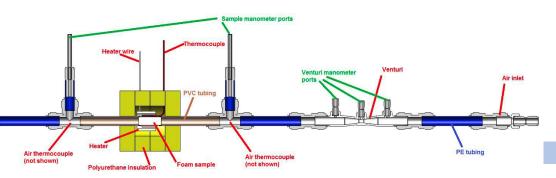
Milestone Description	Date
Report on baseline stave designs	10/2022
 Report on baseline disc designs Stiffness & vibrational requirements for staves & discs Examine disc options (stave based, plate based, etc.) Develop options based on potential reticle sizes 	12/2022

• Disc options

- Stave based, plate based, etc.
 - Benefits & drawbacks (material budget, stiffness, etc.)
 - Cooling?
- Some layout options have already been attempted (Ernst & others)
 - Further optimizations, simulations to study dead area/overlap

eRD111: Mechanical/Cooling

Milestone Description	Date
Report on baseline stave designs	10/2022
Report on baseline disc designs	12/2022
 Report on simple disc & stave models FEA analysis of stave & disc designs Fabricate & test simple disc & stave mechanical models (mechanical properties, cooling) 	06/2023
Up-to-date silicon tracking CAD models	01/2023


eRD111: Mechanical/Cooling

Milestone Description	Date
 Report on mechanics conceptual design Review carbon foam studies for cooling options Integrate cooling options into stave/disc prototype designs Develop conceptual designs other mechanical structure/support pieces FEA analysis of shells & cones 	03/2023

- Previous LBNL LDRD on air cooling with carbon foam
 - Structure still exists, needs some technician/engineer time for set-up
 - Planned as a summer project using ITS3 power estimates & carbon foam selection

Summer mechanical project

- Start with previous engineering LDRD
 - Measuring $\Delta T \& \Delta P$
- 1 postdoc, 1 graduate student, 1-2 undergrads
- ~1 day technician/engineer time for setup
- Repeat previous measurements to familiarize ourselves with setup
- Next: more realistic power consumption, different foams, different thicknesses, etc.

Summer software work

- More detailed layout of staves & discs
 - How do the dead areas affect performance?
 - What if we have some overlap?
 - What if we have to liquid cool things?
 - How long can we actually build these?
- Studies on the material budget
 - 0.55% for staves is probably pessimistic how much can we (reasonably!) reduce that?
 - Kapton embedded silicon?
 - Different foam choices & thicknesses
- What pressure & vibration can staves & discs withstand?

Involvement with ITS₃

- Chip testing
 - 88" cyclotron for radiation effects, other test beams in the US (FNAL, SLAC, JLAB)?
 - ALPIDE telescope exists at LANL
- UC Berkeley Postdoc at CERN starting on DPTS test beam analysis
- Possibility for LBNL Postdoc to work on WP1, physics/simulations
- 2 UC Berkeley people at CERN
 - Participated in DPTS test beam

Summary

• eRD111

- Stave/Disc concepts, mechanics/cooling
- Some cooling test setups exist and can be re-used
- Some initial work has already started
 - Information gathering, stave/disc layout options
- Still needed:
 - Workforce: postdoc for simulations/CAD work, postdoc for hardware supervision (starting in fall)
 - Engineer workshop/discussion go through tracker configuration in detail
- ITS3
 - Chip testing, test beam analysis, physics/simulations?
 - Members at CERN provide good opportunity for LBNL involvement