Proposed "agenda" for today:

- APS April meeting abstract submission deadline is upcoming Monday (!) -- January 9, 2023,
- Project detector collaboration meeting next week at Jefferson Lab and via Zoom,
- Updates,
- AOB. including a yay or nay on meeting next week.

Proposed ECCE Tracker - now reference for Detector 1

Figure 2.5: Schematic view of the ECCE tracker, including silicon, μ RWELL, AC-LGAD, DIRC, mRICH and dRICH detector systems.

- We spoke about this a few times in 2022, and fixed the barrel \& disk configurations,
- The field improved as well,
- The barrel AC-LGAD ToF at $\mathrm{r} \sim 0.64 \mathrm{~m}$ with $-1.2<\mathrm{z}<1.2 \mathrm{~m}$ remains part of the updated reference, unlike the inner uRwells,
- Our friends interested in gaseous tracking technology have not really stepped up to productively use $0.42<\mathrm{r}<0.64 \mathrm{~m}$,
- The double-cone, step, and services / integration continue to pose a challenge,
- Timely to revisit the outer MAPS disk radii?

Updated reference configuration and (selected) momentum performance

- Multiple factors in effect; B.dl decreases with decreasing angle, acceptance edges can affect dl and X0
- Wenqing's most recent full simulation results (2022) using Shujie's geometry implementation left room for improvement, perhaps beyond tweaks to the precise z-positions (within the now seemingly stable envelope).

Updated reference configuration and (selected) momentum performance

	10-10 deg
	20-20 deg
	30-30 deg
	150-150 deg
	160-160 deg
	170-170 deg

- Multiple factors in effect; B.dl decreases with decreasing angle, acceptance edges can affect dl and X0
- Wenqing's most recent full simulation results using Shujie's geometry implementation left room for improvement, perhaps beyond tweaks to the precise z-positions (within the now seemingly stable envelope).

Further update to reference configuration - productively use $0.4<\mathrm{r}<0.6 \mathrm{~m}$?

- An increase in outer radius to 0.6 m would increase the area by $\sim 3 \mathrm{~m}^{2}$ or $\sim 30 \%$ of total,
- At first sight advantageous in terms of services; disk at mid-lzl will essentially be "on the cone",
- All else being equal, this should improve momentum resolutions for $\sim 1<\operatorname{abs}(\eta)<\sim 1.8$

Further update to reference configuration - productively use $0.4<\mathrm{r}<0.6 \mathrm{~m}$?

- An increase in outer radius to 0.6 m would increase the area by $\sim 3 \mathrm{~m}^{2}$ or $\sim 30 \%$ of total,
- At first sight advantageous in terms of services; disk at mid-lzl will essentially be "on the cone",
- All else being equal, this should improve momentum resolutions for $\sim 1<\operatorname{abs}(\eta)<\sim 1.8$
- Not all else will be equal though; should pair with material model and also a cost model.

