

Update on Backward-Angle (*u*-channel) VCS and DVCS

Zachary Sweger University of California, Davis

Supported in part by

B. Pire, K. Semenov-Tian-Shansky, and L. Szymanowski, Phys. Rept. 940, 1 (2021), arXiv:2103.01079 [hep-ph]. Backward DVCS cross section \rightarrow partonic correlations and baryon number?

- Recent (2021) work by Pire, Shansky and Szymanowski works to formulate a similarly meaningful interpretation of the backward cross section
- In this work they argue that backward reactions provide access to the location in impact parameter space of diquark and three-quark (shown at right) clusters
- In backward reactions the baryon number follows these clusters to form a "new" baryon

"baryon-to-meson (and baryon-to-photon) TDAs share common features both with baryon DAs and with GPDs and encode a conceptually close physical picture. They characterize partonic correlations inside a baryon and give access to the momentum distribution of the baryonic number inside a baryon. Similarly to GPDs, TDAs – after the Fourier transform in the transverse plane – represent valuable information on the transverse location of hadron constituents."

Modeling *u*-channel DVCS

- We presuppose a peak at backward angles (u=u₀) as is seen in meson production
- EIC will provide an opportunity to measure this peak if it exits, a task that is challenging in fixed-target experiments due to the softness of the photons produced
- The simulation strategy: exploit similarities to *t*-channel

$$\frac{d\sigma}{dt}(t) \sim \exp(-B|t-t_0|) \longrightarrow \frac{d\sigma}{du}(u) \sim \exp(-D|u-u_0|)$$

- *B* and *D* are related to the size of production region which differs in *t* and *u* channels due to role of meson vs baryon exchange trajectories
- D has not been measured for backward DVCS, so for our models we test values measured for backward ω
 production L. Wenliang, (2017), 10.2172/1408890.
 D. Cebra, Z. Sweger, X. Dong, Y. Ji, and S. R. Klein, Phys. Rev. C 106, 015204 (2022)

Zachary Sweger

D. Cebra, Z. Sweger, X. Dong, Y. Ji, and S. R. Kle Phys. Rev. C 106, 015204 (2022). RNC EIC Meeting

Full Cross Section Behavior

- In order to anchor the amplitude, we can fit this model to 11 VCS ($Q^2=1$ GeV²) data points from JLab from 1.77<W<1.96 GeV (above strong resonances)
- Where
 - $\Lambda^2 = 2.77 \text{ GeV}^2$
 - Model 1: D = 2.4 GeV⁻², A = 32 μ b/GeV² •
 - Model 2: D = 21.8 GeV⁻², A = 65 μ b/GeV •

A. Danagoulian et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 98, 152001 (2007)

There are three detector regions of interest for backwards production

Backward DVCS Acceptances

- These simulations used Model 2 for W > 2 GeV
- At low collision energies, the photon will be seen in the B0 and ZDC
- At high energies, the ZDC is critical
- At very low Q², the proton will be seen mostly in the B0
- At high Q², the proton lands almost exclusively in the central detector region

Kinematics of Final-State Particles

- Final-state photons in the B0 and ZDC go will be between 10 and 275 GeV
- Protons from low-Q² events will have low pT
- Moderate pT for high-Q² events will aid detection but the potentially rapid drop-off of the cross section with Q² may prevent this

- We need to be able to resolve the one-photon from CS from the two photons from the π^0 decay
- ZDC is made of segmented PbWO4 towers with 2cm transverse size
- ZDC is ~35m downstream of IP
- If the two photons from the π^0 have an opening angle of 0.3mrad, these should land in different towers
- When processing our backward $\omega \rightarrow \pi^0 \gamma$ events, Alex Jentsch was able to use fast simulations of the ZDC to reconstruct the ω with reasonable efficiency
- In those samples, the photons typically had a separation of >1mrad, resulting in them landing in distinct towers
- It remains to be seen what the separation will be for backward π^0 production since these will have a larger energy than the π^0 s produced from ω decay
- In the coming weeks I will be looking into this problem and considering whether TMVA may be used to separate the events

- Investigate Q²-dependence of photon-polarized cross section
- Generate π^0 and γ samples with the same energy to test ZDC's ability to resolve single high-energy photons vs two-photons from π^0
- There is potential for detecting backward DVCS in UPCs prior to EIC

• working on simulating what this would look like

- Our backward DVCS model is still under development
- Continue writing paper

Thank you for your attention!

zwsweger@ucdavis.edu

Backup Slides

Backwards (u-channel) Compton Scattering

electron beam p/A beam Forward region Backward region Forward vs Backward DVCS **Forward Production** *t*-channel: low Mandelstam *t*, high *u* Momentum transfer to target is small γ is produced in backwards (e⁻-going) direction • Proton in forward direction Proton rapidity only slightly modified ٠ **Backwards Production** *u*-channel: low Mandelstam *u*, high *t* Momentum transfer to target is large . γ produced in forwards (p-going) direction •

• Proton shifted in many units in rapidity

- DVCS can be parameterized in terms of
 - Q^2
 - $W = \sqrt{s} = \sqrt{(p+q)^2}$
 - $|t| = |(p p')^2|$
 - $\cdot |u| = |(p-k)^2|$
 - $\theta_{\rm CM}$
 - *\phi*

t, u, and θ all parameterize the momentum transfer in the reaction. Only one is needed in the cross section

 ϕ describes rotation of γ p plane relative to γ^*e^- plane. This is a polarization observable, but does not affect rapidity distributions that we're studying

$$\frac{d^4\sigma[ep \to e'p'\gamma]}{dQ^2dWd\phi dt} = \Gamma(Q^2, W) \frac{d^2\sigma[\gamma^*p \to p'\gamma]}{d\phi dt} (Q^2, W, \phi, t)$$

Typical Description of DVCS cross section

- Differential cross section at fixed Q² and W is typically modeled using an exponential of the form $e^{-b|t|}$
- The Fourier transform of this differential cross section encodes information about the proton GPDs in impact-parameter space
- So why care about cross section at very high |t|?

Non-trivial Behavior at High t

- We should start from the assumption that we should not expect photon production (DVCS) cross sections to be wildly different from vector-meson production cross sections (vector-meson dominance)
- Cross sections for vector (and non-vector) mesons also have exponential drop-off in |t|, BUT also an exponential rise at the highest |t| values
- This is from *u*-channel contributions which may also be expected in DVCS

Zachary Sweger

Meaning of *t*-channel Cross Section

Yellow Report, R. Abdul Khalek et al., arXiv:2103.05419.

Figure 7.46: Impact parameter distributions at x = 0.001 and $Q^2 = 4 \text{ GeV}^2$ for unpolarized sea quarks in an unpolarized proton (left), a transversely polarized proton (middle), and for unpolarized gluons in an unpolarized proton (right), obtained from a combined fit to the HERA collider data and EIC pseudodata [23]. Top row: IPDs at fixed $b_x = 0$ as a function of $b = b_y$. Bottom row: density plots of IPDs in the (b_x, b_y) -plane.

Forward DVCS cross section \rightarrow proton GPDs

- Differential cross section as a function of t encodes information about proton GPDs
- GPDs can be translated into an impact-parameter description of the proton via a Fourier transform in t
- Thus the forward DVCS cross section is meaningfully related to the parton structure of the proton

Modeling *W*-Dependence

- Backward physics is dominated by Regge-exchange trajectories for which the cross sections typically scale with $W^{-\alpha}$ where $\alpha > 0$
- In our backward ω/ρ paper, we used a data-driven (W²-m_p²)^{-2.4} dependence

• Several sources suggest rough $(W^2 - m_p^2)^{-2}$ scaling which is what we start from.

G. Laveissi`ere et al., Physical Review C 79 (2009), 10.1103/physrevc.79.015201.

S. J. Brodsky, F. J. Llanes-Estrada, and A. P. Szczepaniak, Phys. Rev. D 79, 033012 (2009).

W. B. Li et al. (Jefferson Lab $F\pi$ Collaboration), Phys. Rev. Lett. 123, 182501 (2019).

$$\frac{d\sigma}{du}(W,u) \sim \frac{1}{(W^2 - m_p^2)^2} \exp(-D|u - u_0|)$$

D. Cebra, Z. Sweger, X. Dong, Y. Ji, and S. R. Klein, *Phys. Rev. C* 106, 015204 (2022).

Backward VCS in Resonance Region

- There is some limited data available for this
- For backward VCS in the resonance region, JLab measured (Q²+2.77 GeV²)⁻⁴ dependence

Backward ω Production Above Resonance

- Polarization-dependent cross section
- Q²-dependence is much softer for transverselypolarized photons.
- Needs to be explored further in our simulations

