Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science # Improvement of stability of Nb₃Sn superconductors by introducing high specific heat substances -- Xingchen Xu, Sasha Zlobin, Pei Li ## **Motivation** Nb₃Sn magnets: slower training rate than NbTi. May be a potential problem for large projects (e.g., FCC: 14% margin, ~5000 dipole magnets). ## Slow training because: - $ightharpoonup Nb_3Sn$ is intrinsically less stable than NbTi (larger D_s , higher J_c) - Epoxy impregnation (poor dynamic stabilization, epoxy cracking) - Other perturbations #### How to solve? For intrinsic instability: $\frac{\mu_0 J_c^2 d_{eff}^2}{4C(T_c - T_b)}$ < 3 (adiabatic), RRR (dynamic) For external perturbations: try to be less sensitive to them: $\Delta T = Q/C$. How to increase *C* of conductors/cables/coils? Add substances with high C: Gd₂O₃, PrB₆, CeCu₅, etc. Not a new idea. The question is, how to do this practically. # How to add high-C substances in? We have considered various ways of applying this idea practically: 1. Add such powders to epoxy: effectiveness - 2. Coat such powders onto cables? Cracking during winding? - 3. Add such powders directly to Nb₃Sn wires? Need to find a proper wire design. #### **Problems:** - . Difficult to do - 2. Difficult to draw Increasing *C* is a correct direction to go, but the key issue lies in how to do it practically. Keilin V E et al. 2009 Supercond. Sci. Technol. 22, 085007 ## Our scheme We decided to add high-C materials directly into Nb₃Sn wires. ... and, thanks to the design of modern high- J_c Nb₃Sn wires: ### Distributed-barrier Nb₃Sn wires: We use Gd_2O_3 due to its availability and high C: - \triangleright 2 K: $C(Gd_2O_3)/C(Cu)=1000$ - \rightarrow 4.2 K: $C(Gd_2O_3)/C(Cu)=170$ - 9 T does not suppress its C Our scheme: Cu tubes filled with high-C powders We use mixture of Cu & high-C powders instead of pure high-C powders. This modification brings two advantages: - (1) Enhance thermal conduction - (2) Draw better | | (2) Diaw botton | | | | | | | |--------------------------------------|-----------------|--------------------------|---------------------|------------------|-------------------------------------|--------|-----| | \times | | | _ | | 1 | 1 | | | m ² | 100 | - 1 | | Ko | | • | * - | | Volumetric specific heat, C, kJ/m²-K | | $C(\operatorname{Gd}_2)$ | O_3), 9 | Γ C C | of Gd ₂ O ₃ , | 0 T | | | | 10 | <i>C</i> of 1 | Nb ₃ Sn, | 0 T | | | | | ecific | | | N. | | | | | | ric sp | 1 | - / | | | // | | - | | umet | | Variation of the second | | | C of C | u, 0 T | | | Vol | 0.1 | | | | | | | | | 0.1 | 2 | 4 | 6 | 8 | 10 | 12 | | | | | | | ture, T, K | | | At 4 K, 0 T Cu Gd₂O₃ α, m²/s 1 < 10⁻⁹ There are other high-C substances. ## Wires fabricated #### Wires were fabricated by Hyper Tech. #### The control wire without Gd₂O₃: The wire with Gd_2O_3 powder (Cu/ $Gd_2O_3 = 0.5$): Wires drawn to 1.0 and 0.7 mm without any issues. 625C/ 250h: Control wire: High-C wire: Control wire: High-C wire: 1.0 mm 0.7 mm 0.7 mm 107 271 23 34 **Fermilab** # **Measurements of stability** Minimum quench energy (MQE) measurements: 640°C/200h, non-Cu J_c s at 4.2 K, 14 T: 1220 and 1310 A/mm² for control and high-C wire. # **Further optimizations** Cu/Gd₂O₃=0.5. Cu forms isolated islands in Gd₂O₃: only a surface layer can absorb heat. ## Optimization 1: Cu/Gd₂O₃ ratio & mixing - ➤ Ideal structure: Cu forms a continuous network, dividing Gd₂O₃ into small islands (sub-micron scale). - ➤ Will try different Cu/Gd₂O₃ ratios. - This could make the stabilization effects more significant. ## **Optimization 2: wire design** Most effective design: For this 271-Re design, the fractions are: - ➤ Nb₃Sn subelements: ~43% of the wire; - \rightarrow Gd₂O₃: ~2% (by assuming Cu/Gd₂O₃=3) 2 vol.% Gd₂O₃ improves *C* of a Nb₃Sn wire by 20 times at 2 K; by 4 times at 4.2 K. Price? 1 kg Nb₃Sn wire needs 17 g Gd₂O₃. Gd₂O₃ powder (99.9%, 10-100 nm) is <\$800/kg, half of Nb₃Sn wires (\$1700/kg). # **Summary** - 1. The goal of this project is to combat instability and slow training rate of Nb₃Sn magnets. - 2. The method is to increase the specific heat capacity, which not only makes superconductors intrinsically more stable, but also makes them less sensitive to external perturbations (i.e., improvement of energy margin against quenches). - 3. A method is put forward to add high-C substances to Nb₃Sn wires, which: - Adds minimum difficulty to wire fabrication and drawing - Does not harm RRR or non-Cu J_c - Reduces flux jump amplitudes - Improves MQE values significantly - 4. Further optimization can lead to more significant stabilization. - 5. We have started a contract with Bruker EAS and OST to make long wires.