

## Computing Resources and processing plans for 2023 Latchezar Betev

A Large Ion Collider Experiment



### Resources usage



#### CPU utilization and breakdown by job types



- Full utilization of the available resources with significant amount of opportunistic CPU usage at the T0 and LBL\_HPC, Japan, Winger and EPN
- CPU capacity covers the pledges @ T0, T1s and T2s but pledge / C-RSG 90% @ T1 in 2022



- Higher activity for raw calibration and reconstruction of Run 3 pp runs than previously reported
- Steady Run 2 analysis activity for conferences and publications (~30%)
- Expected lower MC share, priority to new data



#### CPU utilization and breakdown by job types



- Increasing Run 3 analysis share in the last months: hyperloop reached ~18% of CPU share
- While Run 2 analysis is steady at ~30%
- About 50% of our current CPU resources are used by analysis workflow

- Higher activity for raw calibration and reconstruction of Run 3 pp runs than previously reported
- Steady Run 2 analysis activity for conferences and publications (~30%)
- Expected lower MC share, priority to new data



#### Asynch. reconstruction on GPU and CPU

- Asynch. reconstruction of 2022 pp data with CPU on GRID (8 cores per job) and with CPU+GPU (2 configurations has been tested in production: 16 virtual cores + 1 GPU per job and half EPN (64 virtual cores) in NUMA domain with 1 GPU per job)
- Efficient reconstruction with GPU required tailored job tuning, taking into account the GPU and CPU models and memory
- EPN capacity was limited by outbound network connectivity, requires major network reconfiguration
- The concurrent productions on GRID and on EPN allowed to speed up processing



55000

52500

50000 47500

45000

42500

40000

35000 32500

30000

27500 \$ 25000

22500

20000

17500

15000

12500

10000

5000

2500

pp apass1

Nov

Output: 11 PB

2022



#### 2022 pp data processing

Dec

alidaq

Concurrent CPU cores used for the async reconstruction (GRID+EPN)
Up to 55000 cores + 440 GPUs
in apass2 and apass3 !
apass3

apass2

Jan

Output: 7 PB

2023

Feb

- Exploitation of GRID (CPU) and EPN (CPU+GPU) resources together allows to process a complete pass (1\*10<sup>12</sup> events) in less than 25 days: CPU + GPU
- Required 7-11 PB storage at T0, T1s (replicas) per pass
- Inbound connection from EOS02: average 30 GB/s but peak close to design value
- Outbound connection to T0, T1s SEs: average 6 GB/s but remote storage bandwidth is limited (10-100 Gb/s -> 1.2-12 GB/s ) and shared with WLCG



#### Run 3 MC productions and simulation estimates

- First Run 3 estimates of the simulation computing needs based on experience from Run 2 with Geant 3 (TDR and addendum)
- In 2022 ALICE performed extensive General-Purpose MB Run 3 simulations with Geant 4:
  - Unanchored simulation of pp at 500 kHz @ 13.6 TeV with realistic filling scheme
  - Unanchored simulation of Pb-Pb for the validation against 2018 Pb-Pb results
  - First productions anchored to 2022 periods: pp at injection and top energy + 2022 Pb-Pb tests
- As well as different signals, as prompt and non-prompt J/psi, Heavy Flavors, Multi-Strange and Jets have been injected into MB pp events for the selection studies
- Promising results on GRID with 8-core queues for pp and Pb-Pb GP MB:
  - Repeated the pp and Pb-Pb simulations on a reference machine
  - The total improvement is about 4 times better than the estimates based on Run 2
- Run 3 MC estimates has been updated accordingly:
  - Generate 4x more events with same CPU resources (ratio MC/data 8% instead of 2%, including embedding): increase of disk to store output (2.5 PB -> 10 PB for the whole Run 3)



#### **DISK and TAPE utilization**



- Overall deployed / 2022 C-RSG ~100%:
  - Deficit at T1s, surplus at T2s
- Current disk use 93%, 78% and 76% of pledged capacity at T0, T1s and T2s respectively
- Deletion of apass1 ongoing (11 PB @ T0,T1s)



- Pledges / C-RSG: 100% at T0 and 114% at T1s (8.8 PB surplus)
- Expected usage in line with the requested resources as for CPU and disk excluding Pb-Pb (about 52 PB available wrt C-RSG)



#### Job profile

Mix of single-core (alitrain), 1-2-4 core (hyperloop), 8-core (O2 MC and O2 RAW)





#### Cores profile

Profile still under-counts the number of running cores - to be fixed soon.





# Computing resource and processing plans 2023 - 2024



#### Computing resources needs for 2023

- C-RSG endorsed our computing resource requests for 2023 in April 2022
- FAs entered their 2023 pledge input into CRIC in September 2022
- no HI at high rate in 2022 has reduced the planned resource usage in 2023 but
  - Measured larger CTF average event size during 2022 pp data taking wrt MC (+50%@650kHz)
    - Strategy under study to reduce the impact on tape:
      - The assumption for the computing requirements is +30% CTF average event size as an upper limit wrt our previous estimates
  - Adoption of more aggressive compression strategy B postponed to 2024 (after HI)
    - While the requests for 2023 were based on strategy B
    - Conservative strategy A impacts on the needed tape for 2023
  - The LHC schedule for 2023 and 2024 has been re-discussed and it will require more computing resources to cope with the new conditions, notably longer HI period in 2023 (5.5 w):
    - excluding setup: 27 days Pb-Pb data taking + 5 days of pp reference run
    - Pb-Pb 2023 target 3.25 nb<sup>-1</sup>+ pp ref runs target 3 pb<sup>-1</sup>+ pp @ 13.6 TeV target 30 pb<sup>-1</sup>



#### Projections of tape and disk needs for 2023

- Tape most affected by strategy A and larger number of clusters in TPC:
  - Considered for 2023 a scenario with CTF average event size at +30% as an upper limit
  - Available tape in 2023 ~109 PB (2023 pledges expected used tape in Apr 2023)
  - pp low-field events are about 30% larger with respect to the full-field due to the lower  $p_{T}$  cutoff
    - considering the short pp run in 2023 and the impact on tape requests:
    - in 2023 only 10% of Run 3 luminosity goal (3 pb<sup>-1</sup>), while the remaining 90% in 2024

| Collision Type        | рр    | pp low field | pp ref run | Pb-Pb   | Total Size |  |
|-----------------------|-------|--------------|------------|---------|------------|--|
| Integrated Luminosity | 30/pb | 0.3/pb       | 3/pb       | 3.25/nb |            |  |
| Strategy B MC [PB]    | 0.7   | 0.7          | 4.1        | 47.7    | 53.2       |  |
| Strategy A MC [PB]    | 1.3   | 1.2          | 7.6        | 71.5    | 81.6       |  |
| Strategy A +30% [PB]  | 1.7   | 1.5          | 9.9        | 92.9    | 106.0      |  |

- Being the 2022 HI postponed to 2023, disk used in 2022 was less than requested:
  - AOD average event size not affected by larger number of clusters in TPC
  - 29 PB of available disk in 2023 18 PB needed in 2023: 11 PB surplus to be carried over



#### **Baseline scenario for 2024**

| 2022 |  |  |       |       | 9w                       |  | <1w LHCf |  | scale  |
|------|--|--|-------|-------|--------------------------|--|----------|--|--------|
| 2023 |  |  | 13    | w p-p | 1w hi <mark>g</mark> h β |  | 5w PbPb  |  | Not to |
| 2024 |  |  | 16w p | -р    | 1w 00                    |  | 4w PbPb  |  | ~      |
| 2025 |  |  | 17w p | -р    |                          |  | 4w PbPb  |  |        |

- Assumed that the HI run in 2024 could be extended to 5 weeks
- Same luminosity goals of 2023 for Pb-Pb and pp ref runs:
  - 3.25 nb<sup>-1</sup> of Pb-Pb collisions (strategy B aggressive)
  - 3 pb<sup>-1</sup> of pp ref run
- Such an assumption accommodates with some margin, all the different possible scenarios for the HI period in 2024.

- Considered as upperlimit:
  - **112 days of pp in 2024:** 
    - ~42 pb<sup>-1</sup> of pp full-field
    - ~2.8 pb<sup>-1</sup> of pp low-field
  - Short O-O and p-O run:
    - 1 nb<sup>-1</sup> and 5 nb<sup>-1</sup>, respectively



#### Updated 2023-2024 processing timeline





#### CPU needs for 2023 - 2024



- The blue line is the minimum CPU capacity needed to process all the planned productions on GRID, while the dashed line shows the ALICE requests
- The achieved performances of the asynch. reconstruction on EPN with GPUs allow to lower our 2024 CPU request from 1960 kHS06 (previous estimate) to 1880 kHS06



#### Disk and tape needs for 2024

- Disk: AOD average event sizes are unchanged with respect to 2022 and 2023 requests
- Tape: considered the adoption of compression strategy B (aggressive) in 2024:
  - But with CTF average event size at +30% as an upper limit for strategy B as well

|          |        | 2024    |                |               |                      |                     |                |               |                     |                      |       |                                       |
|----------|--------|---------|----------------|---------------|----------------------|---------------------|----------------|---------------|---------------------|----------------------|-------|---------------------------------------|
| <u>م</u> | ALICE  | pp 2023 | pp ref<br>2023 | Pb-Pb<br>2023 | pp low<br>field 2023 | pp 2024             | pp ref<br>2024 | Pb-Pb<br>2024 | O-O and<br>p-O 2024 | pp low<br>field 2024 | Total | Total -<br>carry<br>over from<br>2023 |
|          | Tier-0 | 0.0     | 1.4            | 4.9           |                      | processed in<br>1.6 | 0.7            | 2.3           | 0.2                 | 1.5                  | 12.8  | 9.3                                   |
|          | Tier-1 | 0.0     | 1.3            | 4.7           | 0.2                  | 0.8                 | 0.7            | 2.3           | 0.2                 | 1.5                  | 11.7  | 8.2                                   |
| Disk     | Tier-2 | 0.0     | 1.4            | 5.1           | 0.2                  | 0.5                 | 0.7            | 2.4           | 0.2                 | 1.6                  | 12.1  | 8.2                                   |
| [PB]     | Total  | 0.1     | 4.1            | 14.7          | 0.5                  | 2.9                 | 2.0            | 7.0           | 0.7                 | 4.6                  | 36.7  | 25.7                                  |
|          | Tier-0 | 0.0     | 0.0            | 0.0           | 0.0                  | 1.6                 | 3.7            | 41.3          | 0.4                 | 5.4                  | 52.4  | 55.0                                  |
| Таре     | Tier-1 | 0.0     | 0.0            | 0.0           | 0.0                  | 0.8                 | 1.9            | 20.6          | 0.2                 | 2.7                  | 26.2  | 19.9                                  |
| [PB]     | Total  | 0.0     | 0.0            | 0.0           | 0.0                  | 2.4                 | 5.6            | 61.9          | 0.6                 | 8.1                  | 78.7  | 74.9                                  |



#### Summary

- Computing resource utilization:
  - Full utilization of CPU resources
  - EPN CPU and GPU resources successfully exploited for the processing of pp data
  - Disk and tape expected usage in line with the requested resources excluding Pb-Pb
- Computing resources needs for 2023 with the updated Run 3 schedule:
  - The postponed 2022 HI data taking lowers our CPU and disk needs in 2022-2023
  - Re-assessed tape needs with strategy A with larger average event size (+30%)
  - and with longer HI period in 2023
- Resource requests for 2024:
  - Considered the carryover from 2023, step for tape (+75 PB)
  - CPU and disk in 2024 compatible with flat budget considering our 2023 requests
- Sizeable impact of the war in Ukraine: RU resources needed to be replaced by 2024