

Decay data measurements using MMCs at CEA-LNHB

Matias Rodrigues

Martin Loidl Arshjot Kaur (PhD student) Mostafa Zahir (PhD student)

MiND Workshop, June 28, 2023

Outline

- Introduction
 - Presentation of the CEA-LNHB
 - Short history of the MMCs at LNHB
- Decay data by decay energy spectrometry
 - Beta shape of ⁶³Ni and ²⁴¹Pu
 - BR and end-point energy of ¹⁵¹Sm
 - Electron capture probabilities of ⁵⁵Fe
- Absolute L X-ray emission intensities of actinides
 - The MMC SMX3
 - L X-rays from the decay of ²³⁸Pu, ²⁴⁴Cm ²³³Pa, ²³⁷Np
 - L X-rays from the decay of ²⁴¹Am

Introduction

The Laboratoire National Henri Becquerel Activity Metrology

Conventional methods for activity standardization

- 4πβ-γ coincidence
- α-particle counting by defined solid angle
- Liquid scintillation (TDCR method)
- Triple internal gas counting
- And others...

Decay data measurements and evaluations

- Beta and gamma-ray spectrometry
- Monochromatic sources of photons
- Code Beta shape
- DDEP Decay Data Evaluation Project (Data recommendation dissemination of data http://www.lnhb.fr/donnees-nucleaires/module-lara/)
- Metallic magnetic calorimeters

Radioactive source preparation

- Authorizations to prepare and to measure many radionuclides with large activity,
- Liquid, solid or gaseous radioactive source
- Radiochemical separation
- Source activities with low uncertainties

MMC at LNHB: started in 2004 with the direct coupling

- Electroprecipited ²⁴¹Pu source (8 Bq) between two 12 µm thick gold foils
- Energy calibration: external ⁵⁵Fe source
- Data recorded continuously 2.6 days @ 16 mK

First measurement of the beta spectrum of ²⁴¹Pu with a cryogenic detector

M. Loidl *, M. Rodrigues, B. Censier, S. Kowalski, X. Mougeot, P. Cassette, T. Branger, D. Lacour

MMC at LNHB : 2008, Coupling with meander shape pick-up coil

MMC chips produced in collaboration with KIP 🔷 🎲 Heidelberg 2010-2021 and KIT Karlsruhe 2021-now

For a given radionuclide and a given spectrometry, absorber sized is to achieve the required efficiency.

- \rightarrow The sensor MMC size chosen such as the sensor matches the absorber heat capacity
- \rightarrow The source+absorber prepared at LNHB and attached to the sensor by gluing

Decay data by decay energy spectrometry

Beta spectrum shapes of ²⁴¹Pu and ⁶³Ni

Impact on the activity measurement by LSC

E =

Counting efficiency in liquid scintillation depends on the beta spectrum for the 2 LSC methods:

 $(S(E)(1-e^{-\eta})^2 dE)$

- CIEMAST/NIST (CN) (2 PMTs)
- TDCR (triple to double coincidence ratio) (3 PMTs) TDCR =

→Better agreement between the 2 LSC methods taking into account the exchange effect

 $(S(E)(1-e^{-\eta})^3 dE)$

Recommended value DDEP: 99.07 (4)% and 0.93 (4)%

• Measured $E_{max} = 76.430$ (68) keV.

Recommended value AME2020: 76.5 (5) keV

Beta spectrum of ¹⁵¹Sm

K. Kossert, ARI, Vol. 185, 110237, 2022 https://doi.org/10.1016/j.apradiso.2022.110237

Electron capture probabilities (EC) of 55Fe

Like pure beta emitters to the GS, EC radionuclides to the GS can only be measured in LSC Absorber with ⁵⁵Fe

10⁴

- \rightarrow EC probabilities is required.
- Source prepared by electroplating on Au foil
- Source foil with ~ 10 Bq of 55 Fe between two Au foils

L Captures

10³

(770 eV)

Energy [eV]

Absorber dimensions 600 µm × 600 µm × 24 µm

1 week data taking i.e. 4×10^6 counts

M. Loidl, et al. ARI, Vol. 134, P395, 2018 https://doi.org/10.1016/j.apradiso.2017.10.042

M Captures

10²

(84 eV)

1200 r

1000

800

Counts

400

"Absolute" photon emission intensities (PEIs)

- Absolute PEIs: *I* = number of photons at *E* per 100 decays
- Essential decay parameter for quantitative analysis by photon spectrometry
- Absolute PEIs are challenging to measure accurately with standard deviation < 1%...

• $\varepsilon_{FEP}(E)$ is the product of $\varepsilon_{int.}(E) \times f_{geo}$ where $\varepsilon_{int.} = f(E) < 1$

 f_{geo} : geometrical factor between source-collimator-absorber ε_{int} : intrinsic detection efficiency

 ϵ_{FEP} and $\epsilon_{int.}$ are difficult to calibrate accurately

SMX3: A dedicated MMC for L X-ray spectrometry of actinides

- 4 absorbers of 1 mm²
 50 μm of Au + 17 μm of Ag thick
- Intrinsic efficiency > 99% between 10-25 keV

 $\leftarrow w$

- 10 − 20 s⁻¹ (τ_d ≈ 4 ms)
- Energy resolution FWHM of 22 40 eV

sensor

Intrinsic Detection efficiency of AuAg absorbers

ightarrow Quasi-constant intrinsic efficiency below 25 keV, $arepsilon_{int.} \sim 1$

 \rightarrow Minimize the efficiency correction

Full energy peak detection efficiency calibration using ²⁴¹Am and MC simulations

$$\boldsymbol{\varepsilon}(\boldsymbol{E}) = \frac{N(E)}{\Delta t \cdot A \cdot I(E)}$$

Efficiency calibration

- ²⁴¹Am spectrum to establish experimental data of
- Extendable dead applied to MMCs to determine Δt
- Definition of a meta-geometry by and for Monte Carlo simulations

Efficiency uncertainty

- < 10 keV</p>
 - ~ 4% uncertainty at 2 keV given by Be window
- 10 keV < E < 25 keV
 0.7% uncertainty given by I(XLβ)
- > 25 keV
 - 1.2% to 2.4% uncertainty given by I(59.5 keV)

L X-ray emission intensities of actinides

Many actinides decay by α -emissions and have intense L X-ray PEIs between 10-25 keV

Nuclide	LX-ray intensity / 100 dis.	relative unc. (%)	Method	Number of measurements	calc. vs. exp.
Pu-239 → U-235+α	4.66	1.1	meas.	4	disagree
Pu-240 → U-236+α	10.34	1.5	meas.	6	agree
Am-241 → Np-237+α	37.66	0.5	meas.	9	disagree
Cm-242 → Pu-238+α	9.92	2.3	calc.	2	disagree
Cm-244 → Pu-240+α	8.92	2.6	calc.	1	agree
U-235 → Th-232+α	40.0	55.0	calc.	-	-

Cez

Data and spectrum processing

Data continuously recorded with a 16 bits resolution DAQ
 @ 250-500 kHz

• Data analyzed offline

ullet

- Pulse triggering
- Live time determination
- Pulse energy estimation
- Pile-up rejection
- Temperature drift correction
- Non-linearity correction
- Energy resolution equalization
- Spectrum co-adding
- Counting statistics of few 10⁶ X-ray counts
 - FWHM at best of 22 eV and 32 eV between 0 and 166 keV)

Spectrum processing

Diagram (solid lines) and satellites (dashed lines)

 R. Mariam *et al.* Spectrochim. Acta B Vol. 187, 2022, 106331
 19

 https://doi.org/10.1016/j.sab.2021.106331
 19

Comparison with PEIs in the literature

Total L X-ray emission intensity

Siegbahn group L X-ray emission intensities

	238 Pu(α)	$\rightarrow ^{234}\mathrm{U}$	$^{244}\mathrm{Cm}(\alpha)$	$\rightarrow ^{240}\mathrm{Pu}$	233 Pa(β^-) $\rightarrow ^{233}$ U			
Group	This work	Johnston [34]	This work	Johnston [34]	This work	Calculated		
Lı	0.2418 (29)	0.231 (3)	0.2306 (35)	0.214 (3)	1.075 (19)	1.05 (4)		
Lα	3.816 (43)	3.81 (3)	3.49 (5)	3.38 (3)	15.69 (20)	16.9 (6)		
$L\eta$	0.1284 (16)	0.126 (2)	0.1002 (22)	0.102 (2)	0.235 (19)	0.272 (16)		
Lβ	5.23 (6)	5.18 (4)	4.22 (6)	4.08 (3)	16.89 (25)	18.1 (6)		
Lγ	1.291 (14)	1.29 (1)	1.023 (15)	0.991 (8)	3.97 (6)	4.23 (14)		

Agreement k = 1Agreement k = 2In disagreement

Tens of PEIs of individual L X-ray transitions

Li	ne		²³⁸ Pu	$(\alpha) \rightarrow {}^{234}\mathrm{U}$			$^{244}\mathrm{Cm}(\alpha) \rightarrow ^{240}\mathrm{Pu}$							
Siegbahn IUPAC		C Energy	X-ray emission intensity		Rel	Rel. Unc. (%)		Energy	X-ray emission intensity		Rel. Unc. ((%)	
		(eV)	per 100 L X-rays	per 100 decays	u_1	u_2	<i>u</i> ₃	(eV)	per 100 L X-rays	per 100 decays	u_1	<i>u</i> ₂	<i>u</i> ₃	
-	L ₁ -L ₃	4589.2	0.0214 (44)	0.00229 (47)	0.72	20	1.2	5054.63	0.0267 (13)	0.00242 (13)	0.37	5.0	1.6	
Lı	L ₃ -M ₁	11618.4	2.257 (11)	0.2418 (30)	0.72	0.49	0.86	12124.4	2.540 (13)	0.2306 (36)	0.37	0.49	1.4	
Ls	L ₃ -M ₂	11982.0	0.0227 (15)	0.00243 (16)	0.72	6.6	0.86	12503	0.0269 (20)	0.00244 (18)	0.37	7.4	1.4	
Lt	L ₃ -M ₃	12864.7	0.0286 (17)	0.00307 (18)	0.72	5.8	0.86	13485.4	0.0315 (16)	0.00286 (15)	0.37	5.2	1.4	
La ₂ La	L ₃ -M ₄	13439.8	3.604 (7) 32.007 (20)	0.3862 (44) 3 <i>4</i> 29 (39)	0.72	0.20	0.86	14074.5	3.806 (11) 34 68 (7)	0.346 (5) 3 149 (47)	0.37	0.29	1.4	
La_1	L ₃ -1V15	13014.0	52.007 (20)	3.429 (39)	0.72	0.002	0.00	(2022) 10622	34.00 (7)	5.149 (47)	0.57	0.21	1.4	
$L\eta$	$\mathbf{L}_{\mathbf{i}}$		Зр	ectrochinica Acta Part B.	Atomic a	pectros	opy 187	(2022) 10033	1		0.37	1.6	1.4	
	-	ANA DAKA LUL-		Contents lists	availab	a at Sa	ioncoDir	last			0.07	1.0		
Lβ ₆ ι α				Contents lists	availab	e at so	lenceDir	ect		SPECTROCHIMICA	0.37	1.2	1.4	
$L \rho_{2,15}$	L3	a Alexandre	0	1.1	Dent	D. A				ACTA server reason	0.57	0.23	1.4	
L <i>B</i> ,	L		Spectroc	nimica Acta	Part	В: А	tom	ic Spect	roscopy		0.37	1.9	1.4	
$L\beta_{17}$	L	A les									0.37	2.5	1.4	
Lu	L ₃ FI S	FVIER		iournal homepage	www.e	elsevie	r.com/lc	ocate/sab			0.27	25	14	
$L\beta_7$,							0.57	5.5	1.4	
L $meta_{s}$	L ₃										0.37	0.81	1.4	
- 0	L											0.00		
$L\beta_1$		•						c 238-	244	Check for	0.37	0.10	1.4	
Lp_3	L Det	erminat	ion of L-X ray a	absolute emiss	sion	nter	isitie	s of 2001	Pu, ~' 'Cm,	updates	0.37	1.4	1.4	
$L\beta_{10}$	L 237	Nn and	233 Da radionucl	ides using a n	notal	lic m	naan	atic calc	rimeter		0.37	14	1.4	
Lp_9		np and	ra laulolluci	lues using a n	iictai	ne n	lagin	enc car	milleter		0.57	0.5	1.4	
Lи	L		abaa	a *				2 1/ .	- 9		0.37	11	14	
-	L Riha	am Marian	n ^{a, 9} , Matias Rodrig	ies", Martin Loi	dl ^a , S	ylvie	Pierre	e", Valérie	Lourenço "		0.37	4.4	1.4	
Lĸ	L ^a Unive	rsité Paris-Saclay	CFA List Laboratoire National	Henri Recauerel (LNF-LNHR)	F-91120	Palaiseau	France				0.27	0.27	0.3	
L ₂	L ^b Unive	rsité Paris-Saclay	CNRS/IN2P3, IJCLab, 91405 O	rsay, France	. ,	unanocun,	Trance				0.37	4.6	1.4	
$L\gamma_8'$	L_2-N_6	20556.1	0.0010(8)	0.00660 (11)	0.72	1.3	0.86	21829.3	0.0607 (21)	0.00551 (21)	0.37	3.4	1.4	
$L\gamma_8$	$L_2 - O_1$	20625.7	0.0910 (11)	0.00975 (16)	0.72	1.2	0.86	21914	0.0646 (18)	0.00586 (18)	0.37	2.8	1.4	
Lγ ₃	$L_1 - N_3$	20712.4	0.0594 (13)	0.00636 (15)	0.72	2.1	0.86	21980	0.0665 (18)	0.00604 (18)	0.37	2.6	1.4	
$L\gamma_6$	L_2-O_4	20842.0	1.948 (6)	0.2087 (18)	0.72	0.33	0.36	22149.1	1.911 (9)	0.1735 (27)	0.37	0.45	1.4	
-	L_2 - P_1	20904.0	0.0117 (17)	0.00126 (18)	0.72	15	0.86	-	-	-	-	-	-	
-	$L_2-P_{4,5}$	20941.7	0.03312 (50)	0.00355 (7)	0.72	1.5	0.86	22260.9	0.0343 (11)	0.00312 (11)	0.37	3.2	1.4	
$L\gamma_4'$	L_1-O_2	21498.1	0.01838 (41)	0.001969 (49)	0.72	2.2	0.85	22823.3	0.0141 (7)	0.00128 (7)	0.37	5.0	1.4	
Τ	τo	01564.0	0.01245(24)	0.001441 (20)	0.70	0.5	0.05	22000.0	0.01(0)	0.00147 (7)	0.27	1 (1 4	

21

Limits of previous measurements

- Previous PEI measurements limited by the uncertainty on the FEP detection efficiency
- Itself limited by the recommended values of the PEIs of ²⁴¹Am used for the efficiency calibration

PEIs are ultimately interdependent and correlated to some extent

Absolute L X-ray PEIs of ²⁴¹Am independently of other PEIs

Conditions:

```
    ✓ f_{geo,\alpha} = f_{geo,ph.}
    ✓ 100% decay by α-particle emission
    ✓ ε_{int,\alpha} ≈ ε_{int,ph.} ≈ 1
```


 ε_{int} : Intrinsic efficiency $f_{geo,ph}$: geometrical efficiency

However measuring α -particles and photons in the same spectrum is not possible:

- × MMC sensitivity for α -particles (few MeV) and X-rays (10s of keV) must be different
- × Ten times as many emitted particles per decay as there are X-rays
 - \rightarrow Many pile-up or reduced counting statistics, electrons/X-ray interferences

Measurements of two ²⁴¹Am sources with different activities

1st measurement: α spectrum

- ²⁴¹Am source of 1.8 kBq
- Lower MMC sensitivity
- No Be window
- FWHM resolution of 3.3 keV

Measurements of two ²⁴¹Am sources with different activities

1st measurement: α spectrum

- ²⁴¹Am source of 1.8 kBq
- Lower MMC sensitivity
- No Be window
- FWHM resolution of 3.3 keV

2nd measurement: X-ray spectrum

- ²⁴¹Am source of 32 kBq
- High MMC sensitivity
- Be window to stop the α -particles
- spectrum FWHM resolution of 28 eV

 $\rightarrow n_{\alpha}$

L X-ray spectrum of ²⁴¹Am(α) \rightarrow ²³⁷Np Total fit 100000 L₁ diagram L₂ diagram 10000 L₂ satellite Other 1000 100 19500 20000 20500 21000 21500 22000 22500 100000 10000 е c Esc. L Ag loo0 Esc. L A Counts 11500 12000 12500 13000 14500 13500 14000 15000

Additional corrections due to the measurement of 2 sources

$$I(E) = \frac{n_{FEP}(E)}{n_{\alpha}} \frac{F_A \cdot F_{source} \cdot \varepsilon_{int,\alpha}}{\varepsilon_{int,ph}(E) \times t_{Be}(E)}$$

- n_{FEP} and n_{α} from energy spectra
- F_A ratio between source activities determined by conventional α -particles spectrometry
- *F*_{source} correction factor for the inhomogeneity of the surface source activity determined by radioactive source imager.

- $\varepsilon_{int,\alpha}$ and $\varepsilon_{int,ph}$ intrinsic efficiencies ~ 1, determined by Monte Carlo simulations.
- t_{Be} transmission through Be window, calculated.

Results of L X-ray PEIs from ²⁴¹Am(α) \rightarrow ²³⁷Np

Total L X-ray and Siegbahn group (L α , L β , L γ ...) PEIs

- Good agreement with all the previous published data
- Relative uncertainty (0.32%) 2 times lower than the most precise measurement

Results of L X-ray PEIs from {}^{241}Am(\alpha) \rightarrow {}^{237}Np

33 PEIs of individual X-ray transitions are provided

				Relative uncertainties					Relative uncertainties			
X-ray tra	insition	Energy	PEI per 100				Siegbahn	PEI per				
UIPAC	Siegbahn	(eV)	decays	Total	Fitting procedure	Counting statistics	group	100 decays	Total	Fitting procedure	Counting statistics	
L ₁ -L ₃	-	4820	0.2289 (15)	0.65%	0.41%	0.42%						
L_3-M_1	Lı	11873	0.8989 (38)	0.42%	0.13%	0.21%						
L_3-M_2	Lt	12250	0.01024 (26)	2.57%	0.64%	1.96%						
L ₃ -M ₃	Ls	13179	0.0101 (8)	7.59%	7.33%	1.98%						
L ₃ -M ₄	$L\alpha_1$	13762	1.2581 (49)	0.39%	0.19%	0.18%	Ια	13 046 (41)	0.31%	0.084%	0.060%	
L_3-M_5	$L\alpha_2$	13944	11.788 (38)	0.32%	0.13%	0.06%	La	13.040 (41)	0.31%	0.084%	0.009%	
L_2-M_1	$L\eta$											
L_3-N_1	-	IOP Publishing 1 F	Bureau International des Poio	ts et Mesures					Metrolo	ngia		
$L_{3}-N_{4,5}$	$L\beta_{2,15}$	Metrologia 60 (2022) 0	025005 (19pp)					https://doi.org/10.1099	/1691-7575/ach			
L_1-M_2	$L\beta_4$	Metrologia 00 (2023) 0	23003 (Topp)					maps.//doi.org/10.1066	/1001-7575/800	551		
$L_{3}-N_{6,7}$	$L\beta_7'$											
L ₃ -O _{1,2,3}	$L\beta_7$	Dotorn	nination		hool	Ito N	n I v	KOV				
L ₃ -O _{4,5} - L ₃ -	LBe	Delen	IIIIalioi		102011	le n		ray		64%	0.058%	
$P_{1,4,5}$	1-3			! . !	f	24	1	-				
L_2-M_4	$L\beta_1$	emiss	ion inte	nsiti	es tro	om ~ '	'AM	decay				
L_2-M_5	-	_										
$L_1 - M_3$	$L\beta_3$	usina	a metal	lic m	adne	tic ca	alorin	neter				
$L_1 - M_4$	$L\beta_{10}$	domg	u motu									
$ L_1 - M_5$	$\frac{L\beta_9}{L}$											
$L_2 - N_1$	$L\gamma_5$	Matias Rodrig	ques*©, Martin L	oidl and S	Sylvie Pierre	0						
$L_2 - N_3$	- I.v											
$L_2 - N_4$	$L\gamma_1$	Université Paris-Sa	clay, CEA, List, Laborat	toire National	Henri Becquerel	(LNE-LNHB)	, F-91120					
$L_1 - N_2$	L_{γ_2}	Palaiseau, France										
$L_2 = \Gamma_6$		21260	0 02841 (48)	1 69%	1 17%	1 18%						
	L78 L%	21200	0.02041 (40)	0.46%	0.20%	0.30%						
L ₁ -O.	Lγ.	21489	0.6260 (30)	0.48%	0.28%	0.25%	Lγ	4.883 (20)	0.41%	0.26%	0.11%	
L ₂ 0 ₄	-76	21555	0.00386 (16)	4.02%	2.41%	3.20%						
	-	21595	0.02246 (31)	1.39%	0.28%	1.33%						
$L_1 - N_5$	-	21656	0.02041 (30)	1.46%	0.32%	1.39%						
$L_1 - O_2$	L _{V4} '	22155	0.1139 (8)	0.67%	0.15%	0.59%						
$L_1 - O_3$	$L\gamma_{4}$	22216	0.1057 (7)	0.70%	0.15%	0.61%						
L ₁ -O ₄ =	/ +	22319	0.00639 (16)	2.58%	0.61%	2.49%						
$L_1 - P_{2,3}$		22404	0.04361 (46)	1.05%	0.34%	0.95%						

28

cea

Conclusions and perspectives

MMCs are useful tool to provide accurate decay data in metrology of ionizing radiation

- MMCs are suitable for decay data measurements by DES (< 200 keV)
 - Beta spectrum shape
 - End point energies
 - Beta branch probabilities
 - EC probabilities

 \rightarrow We are currently developing multiple MMC channels to achieve high statistics (108 counts) for beta spectrum of ¹²⁹I

- MMCs are suitable for precise and detailed absolute PEI determinations (<100 keV)
 - L X-ray PEIs for ²³⁸Pu, ²⁴⁴Cm, ²³³Pa and ²³⁷Np with relative uncertainties of ~ 0,8%
 - L X-ray PEIs for ²⁴¹Am without efficiency calibration based on other PEIs with relative uncertainties of ~0.3%
 - γ -ray and X-ray PEIs in the range 25 keV-100 keV with relative uncertainties of ~ 0,8%-1%
 - → We are currently developing an MMC array for absolute PEIs of photons < 10 keV
- Measuring these decay data at higher energies is challenging:
 - due to loss of Bremsstrahlung photons for electrons
 - due to loss of efficiency for photons

Thank you for your attention

Matias Rodrigues

