

Backward Processes: Probing Novel Physics at the EIC

"It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you" - Ernest Rutherford

Zachary Sweger

University of California Davis, and LBNL's Relativistic Nuclear Collisions Group

Supported in part by

Diffractive Scattering

- Scattering has long been used to image the nucleus
- Think of black disk diffraction. Diffraction pattern \rightarrow disk size. But partial absorption complicates picture

Diffractive Scattering

- Scattering has long been used to image the nucleus
- Think of black disk diffraction. Diffraction pattern \rightarrow disk size. But partial absorption complicates picture
- Send in a high-energy projectile (such as a photon or proton) and measure diffractive dips
- Larger momenta \rightarrow greater resolving power for small sizes!
- p_T (transverse momentum) and b (transverse scattering distance) are conjugate variables!

• We can look inside nucleons to see what makes them up

M. Krasny et al. European Physical Journal C. 69. 379-397. 10.1140/epjc/s10052-010-1417-0 (2010)

Zachary Sweger 4/18/23

397. 10.1140/epjc/s10052-010-1417-0 (2010)

- We can look inside nucleons to see what makes them up
- Most of nucleon's momentum comes from valence quarks (up, down)
- When we look deeper, MANY sea quarks and gluons contribute as well
- up(u), down(d), charm(c), strange(s), antiquarks ($\bar{u}, \bar{d}, \bar{c}, \bar{s}$) and gluons (g)
- Nucleons and the nucleus change with energy!
- We aim to measure these nucleus/nucleon distributions at high energies

- Scattering mediated by virtual photon at EIC
- Image nucleus by scattering photon off of nucleus' "gluon cloud"

- Scattering mediated by virtual photon at EIC
- Image nucleus by scattering photon off of nucleus' "gluon cloud"

• Meson production similarly images nuclei

- Scattering mediated by virtual photon at EIC
- Image nucleus by scattering photon off of nucleus' "gluon cloud"

- Scattering mediated by virtual photon at EIC
- Image nucleus by scattering photon off of nucleus' "gluon cloud"

Forward cross sections \rightarrow nucleon form factors

• We measure meson/photon production Xsec vs momentum transfer t

Momentum transfer -t (GeV)

Forward cross sections \rightarrow nucleon form factors

- We measure meson/photon production Xsec vs momentum transfer t
- By transforming this in the transverse plane, we can map transverse distribution of partons within proton (or nucleus)

Cross Section for X production

Momentum transfer -t (GeV)

-1.5

-1.5

-1

0.5

1

0

1.5

13

-0.5

Backward Physics

The Question: what does it mean when the photon and ion scatter backward?

A Backward Peak?

• Production Xsec on proton typically modeled by exponential decrease with increasing momentum transfer *t*:

$$\frac{d\sigma}{dt} \sim \exp(-B|t|)$$

• This is consistent with Gaussian nucleon shape profile

A Backward Peak?

Non-trivial Behavior at High t

 Meson-production cross sections have exponential rise at the highest |t| values! (backward scattering angles)

 Production Xsec on proton typically modeled by exponential decrease with increasing momentum transfer t:

$$\frac{d\sigma}{dt} \sim \exp(-B|t|)$$

• This is consistent with Gaussian nucleon shape profile

 $\gamma^* + p \rightarrow p + \omega$, W = 2.4 7 GeV $Q^2 = 2.35$ GeV²

A Backward Peak?

Non-trivial Behavior at High t

- Meson-production cross sections have exponential rise at the highest |t| values! (backward scattering angles)
- This feature comes from *u*-channel contributions
- Characterized by high Mandelstam *t* and small *u*
- What does the peak mean?

Production Xsec on proton typically modeled by exponential decrease with increasing momentum transfer t:

$$\frac{d\sigma}{dt} \sim \exp(-B|t|)$$

• This is consistent with Gaussian nucleon shape profile

Forward scattering off proton's gluon field

Backward Xsecs \rightarrow partonic correlations and baryon number?

• Forward production maps parton distributions within proton/nucleus

Forward scattering off proton's gluon field

Backward Xsecs \rightarrow partonic correlations and baryon number?

- Forward production maps parton distributions within proton/nucleus
- Recent (2021) work by Pire et al. formulates a similarly meaningful interpretation of backward cross sections
- They argue backward reactions may map transverse distribution of quark clusters and baryon number

"baryon-to-meson (and baryon-to-photon) TDAs share common features both with baryon DAs and with GPDs and encode a conceptually close physical picture. They characterize partonic correlations inside a baryon and give access to the momentum distribution of the baryonic number inside a baryon. Similarly to GPDs, TDAs – after the Fourier transform in the transverse plane – represent valuable information on the transverse location of hadron constituents."

> B. Pire, K. Semenov-Tian-Shansky, and L. Szymanowski, Phys. Rept. 940, 1 (2021), arXiv:2103.01079 [hep-ph].

Backward Scattering

Bertulani, Carlos. (2009). Nuclear Reactions.

Backward Scattering

"It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you" - Ernest Rutherford

Bertulani, Carlos. (2009). Nuclear Reactions.

Connecting Backward Processes to Baryon Stopping and Baryon Junctions

Net-proton rapidity distributions at AGS compared with three models of EoS Yu.B. Ivanov. Phys Lett B, Vol 721, Issues 1–3, 2013, 123-130, ISSN 0370-2693 Zachary Sweger 4/18/23

 In relativistic heavy-ion collisions, many nucleons are almost completely stopped

Net-proton rapidity distributions at AGS compared with three models of EoS Yu.B. Ivanov. Phys Lett B, Vol 721, Issues 1–3, 2013, 123-130, ISSN 0370-2693 Zachary Sweger 4/18/23

ullet

- In relativistic heavy-ion collisions, many nucleons are almost completely stopped
- For example, we can collide ¹⁹⁷Au nuclei in which each proton and neutron individually has 10.5 GeV of kinetic energy

Net-proton rapidity distributions at AGS compared with three models of EoS Yu.B. Ivanov. Phys Lett B, Vol 721, Issues 1–3, 2013, 123-130, ISSN 0370-2693 Zachary Sweger 4/18/23

- In relativistic heavy-ion collisions, many nucleons are almost completely stopped
- For example, we can collide ¹⁹⁷Au nuclei in which each proton and neutron individually has 10.5 GeV of kinetic energy
- After the collision, many of the protons have lost nearly all of their longitudinal momentum!
- We call this phenomenon baryon stopping

 In 1996, Dima Kharzeev (CERN) began laying the foundations for what would become known as the "baryon-junction model"

Kharzeev, Phys.Lett. B378 (1996) 238-246, arXiv:nucl-th/9602027

CAN GLUONS TRACE BARYON NUMBER ?

D. KHARZEEV

Theory Division, CERN, CH-1211 Geneva, Switzerland and Fakultät für Physik, Universität Bielefeld, D-33501 Bielefeld, Germany

Abstract

QCD as a gauge non-Abelian theory imposes severe constraints on the structure of the baryon wave function. We point out that, contrary to a widely accepted belief, the traces of baryon number in a high-energy process can reside in a non-perturbative configuration of gluon fields, rather than in the valence quarks. We argue that this conjecture can be tested

- In 1996, Dima Kharzeev (CERN) began laying the foundations for what would become known as the "baryon-junction model"
- At high energies, nucleon and valence-quark wave functions are contracted longitudinally, thereby contracting the collision time

$$t_{coll} \sim (x_V P)^{-1}$$

Kharzeev, Phys.Lett. B378 (1996) 238-246, arXiv:nucl-th/9602027

CAN GLUONS TRACE BARYON NUMBER ?

D. KHARZEEV

Theory Division, CERN, CH-1211 Geneva, Switzerland and Fakultät für Physik, Universität Bielefeld, D-33501 Bielefeld, Germany

Abstract

QCD as a gauge non-Abelian theory imposes severe constraints on the structure of the baryon wave function. We point out that, contrary to a widely accepted belief, the traces of baryon number in a high-energy process can reside in a non-perturbative configuration of gluon fields, rather than in the valence quarks. We argue that this conjecture can be tested

Zachary Sweger

- In 1996, Dima Kharzeev (CERN) began laying the foundations for what would become known as the "baryon-junction model"
- At high energies, nucleon and valence-quark wave functions are contracted longitudinally, thereby contracting the collision time

$$t_{coll} \sim (x_V P)^{-1}$$

• The interaction length (transverse direction) is not likewise contracted $t_{int} = const \sim O(1 \ fm)$

Kharzeev, Phys.Lett. B378 (1996) 238-246, arXiv:nucl-th/9602027

CAN GLUONS TRACE BARYON NUMBER ?

D. KHARZEEV

Theory Division, CERN, CH-1211 Geneva, Switzerland and Fakultät für Physik, Universität Bielefeld, D-33501 Bielefeld, Germany

Abstract

QCD as a gauge non-Abelian theory imposes severe constraints on the structure of the baryon wave function. We point out that, contrary to a widely accepted belief, the traces of baryon number in a high-energy process can reside in a non-perturbative configuration of gluon fields, rather than in the valence quarks. We argue that this conjecture can be tested

Zachary Sweger

At high energies, nucleon and valence-quark wave functions are contracted longitudinally, thereby contracting the collision time

$$t_{coll} \sim (x_V P)^{-1}$$

The interaction length (transverse • direction) is not likewise contracted

 $t_{int} = const \sim O(1 fm)$

At high energies t_{coll} becomes too small for stopping via valence quarks to make sense

$$t_{coll} << t_{in}$$

Zachary Sweger

4/18/23

LBNL NSD Staff Meeting

Kharzeev, Phys.Lett. B378 (1996) 238-246, arXiv:nucl-th/9602027

CAN GLUONS TRACE BARYON NUMBER ?

D. KHARZEEV

Theory Division, CERN, CH-1211 Geneva, Switzerland and Fakultät für Physik, Universität Bielefeld, D-33501 Bielefeld, Germany

Abstract

QCD as a gauge non-Abelian theory imposes severe constraints on the structure of the baryon wave function. We point out that, contrary to a widely accepted belief, the traces of baryon number in a high-energy 30 process can reside in a non-perturbative configuration of gluon fields, rather than in the valence quarks. We argue that this conjecture can be tested

- In BJM, baryon number is not just carried by valence quarks
- baryon number is also carried by a non-perturbative configuration of gluons. These gluons can be easily stopped in a collision
- In backward production protons lose most of their momenta like baryon stopping!

- In BJM, baryon number is not just carried by valence quarks
- baryon number is also carried by a non-perturbative configuration of gluons. These gluons can be easily stopped in a collision
- In backward production protons lose most of their momenta like baryon stopping!
- In our recent paper, Spencer Klein makes the connection between backward production and baryon junctions

- In BJM, baryon number is not just carried by valence quarks
- baryon number is also carried by a non-perturbative configuration of gluons. These gluons can be easily stopped in a collision
- In backward production protons lose most of their momenta like baryon stopping!
- In our recent paper, Spencer Klein makes the connection between backward production and baryon junctions
- In this model, the incident photon, fluctuating to a quark-antiquark dipole, scatters with gluon junction
- Stopped junction dressed with quarks, and high-momentum mesons produced

What we hope to measure

- Backward production cross section measurements for ω, $ρ^0$, φ, $π^0$, J/ψ, γ production
- As a function of
 - Momentum transfer t
 - Incident photon virtuality Q²
 - Bjorken x

Questions we hope to answer

- Can we explain backward production and baryon stopping with one theory? (BJM?)
- How are the cross sections for ω , ρ^0 , ϕ , π^0 , J/ ψ , γ production different and do these differences allow us to develop a comprehensive model of backward processes?
- What does the behavior of the cross section with *t* tell us about the distribution of baryon number, di-quark/three-quark clusters, or a baryon junction within the nucleus?
- If we can map these distributions using backward production, how do they evolve in x and Q^2 ? 34

Modeling Backward Processes for EIC Simulations

- Aside from these fundamental questions, we are working on developing models of backward processes at the EIC
- We take limited data from fixed-target experiments, and attempt to extrapolate to EIC kinematics

- Aside from these fundamental questions, we are working on developing models of backward processes at the EIC
- We take limited data from fixed-target experiments, and attempt to extrapolate to EIC kinematics
- For example, our backward Compton scattering (CS) $(\gamma^* p \rightarrow \gamma p')$ models are compared against data at right

- Aside from these fundamental questions, we are working on developing models of backward processes at the EIC
- We take limited data from fixed-target experiments, and attempt to extrapolate to EIC kinematics
- For example, our backward Compton scattering (CS) $(\gamma^* p \rightarrow \gamma p')$ models are compared against data at right
- In these models we combine predicted Xsec scalings to yield cross sections like:

$$\frac{d\sigma}{du}(Q^2, W, u) \approx \frac{A \exp(-D|u - u_0|)}{(W^2 - m_p^2)^2 (Q^2 + \Lambda^2)^4 / \text{GeV}^8}$$

A. Danagoulian et al. (Jefferson Lab Hall A Collaboration),

Phys. Rev. Lett. 98, 152001 (2007)

The Electron-Ion Collider (EIC)

- To be located at Brookhaven National Lab (Long Island, New York)
- Will replace existing Relativistic Heavy-Ion Collider
- Highly polarized beams
- Electron beam colliding with ion (p,d..., Au) beams
- 5, 10, and 18 GeV electron beams. 41, 100, 275 GeV proton beams

The Future EIC Detector

Figure 9.2: A cutaway illustration of a generic EIC concept detector.

4/18/23

The Future EIC Detector

Detector development is currently underway! •

ECCE Detector Proposal (2022) arXiv:2209.02580v1

Central Detector Around Interaction Region

Backward Endcap Tracking:

- ITS3 MAPS Si discs (x4)
- AC-LGAD

PID:

- mRICH AC-LGAD TOF
- PbWO₄ EM Calorimeter
- (EEMC)

Barrel

- Tracking: ITS3 MAPS Si
- (vertex x3; sagitta x2)
- µRWell outer layer (x2)
- AC-LGAD (before hpDIRC)
- µRWell (after hpDIRC) h-PID:

- AC-LGAD TOF
- hpDIRC Electron ID:
- SciGlass EM Cal (BEMC)
- Hadron calorimetry:
- Outer Fe/Sc Calorimeter (oHCAL)
- Instrumented frame (iHCAL)

Tracking:

- ITS3 MAPS Si discs (x5)
- AC-LGAD

PID:

dRICH

calorimeter (LHFCAL)

AC-LGAD TOF

Calorimetry:

- Pb/ScFi shashlik (FEMC) .
- · Longitudinally separated hadronic

Detectors and Magnets in Far-forward (ion-going) Direction

There are three detector regions of interest for backwards production

- These simulations use model 1 ullet
- Low collision energies: photon ۲ lands in BO and ZDC
- ZDC is critical at high energies ullet
- At low Q² proton is often in BO ullet
- At high Q², proton is almost ulletexclusively in central detector region

- These simulations use model 1
- Low collision energies: photon lands in B0 and ZDC
- ZDC is critical at high energies
- At low Q² proton is often in B0
- At high Q², proton is almost exclusively in central detector region

- These simulations use model 1
- Low collision energies: photon lands in BO and ZDC
- ZDC is critical at high energies
- At low Q² proton is often in B0
- At high Q², proton is almost exclusively in central detector region

- These simulations use model 1 •
- Low collision energies: photon ۲ lands in BO and ZDC
- ZDC is critical at high energies ullet
- At low Q² proton is often in BO ullet
- At high Q², proton is almost ulletexclusively in central detector region

- These simulations use model 1
- Low collision energies: photon lands in B0 and ZDC
- ZDC is critical at high energies
- At low Q² proton is often in B0
- At high Q², proton is almost exclusively in central detector region

Another Channel: Backward $\pi^0 \rightarrow \gamma \gamma$ Production

- Overlaid on 60×60cm ZDC w/ 2×2cm towers
- At low energy and Q², the photons often miss ZDC
- At large collider energies, the photons are forward enough to land mostly in ZDC

Kinematics of Final-State Particles

Compton Scattering ($\gamma^* p \rightarrow \gamma p'$)

- Final-state photons have energies roughly between 10 and 275 GeV
- Scattered protons

- Backward production involves large (seemingly improbable) momentum transfers
- Baryon junction model shares many similarities with backward processes
- Backward production may encode unique information about parton distributions within the proton, an active and evolving topic of research
- We are modeling backward processes to help guide EIC detector development and physics priorities
- We're writing a paper on backward Compton scattering so stay tuned!

Thank you for your attention!

zwsweger@ucdavis.edu

B. Pire, K. Semenov-Tian-Shansky, and L. Szymanowski, Phys. Rept. 940, 1 (2021), arXiv:2103.01079 [hep-ph].

Backward Xsecs \rightarrow partonic correlations and baryon number?

- Forward production maps parton distributions within proton/nucleus
- Recent (2021) work by Pire et al. formulates a similarly meaningful interpretation of backward cross section
- They argue backward reactions map transverse distribution of di-quark and three-quark (shown at right) clusters

4/18/23

Backward Xsecs \rightarrow partonic correlations and baryon number?

- Forward production maps parton distributions within proton/nucleus
- Recent (2021) work by Pire et al. formulates a similarly meaningful interpretation of backward cross section
- They argue backward reactions map transverse distribution of di-quark and three-quark (shown at right) clusters

B. Pire, K. Semenov-Tian-Shansky, and L. Szymanowski, Phys. Rept. 940, 1 (2021), arXiv:2103.01079 [hep-ph].

> "baryon-to-meson (and baryon-to-photon) TDAs share common features both with baryon DAs and with GPDs and encode a conceptually close physical picture. They characterize partonic correlations inside a baryon and give access to the momentum distribution of the baryonic number inside a baryon. Similarly to GPDs, TDAs – after the Fourier transform in the transverse plane – represent valuable information on the transverse location of hadron constituents."

- In BJM, baryon number is not just carried by valence quarks
- baryon number is also carried by a non-perturbative configuration of gluons. These gluons can be easily stopped in a collision

