
TWO-STEP PERFECTLY MATCHED LAYER FOR ARBITRARY-
ORDER PSEUDO-SPECTRAL ANALYTICAL TIME-DOMAIN 

METHODS

OLGA SHAPOVAL1, JEAN-LUC VAY1 AND HENRI VINCENTI2

1LAWRENCE BERKELEY NATIONAL LABORATORY, BERKELEY, USA 
2LIDYL, CEA, CNRS, UNIVERSITE  ́PARIS-SACLAY, CEA SACLAY, GIF-SUR-YVETTE, FRANCE

1



CONTENTS

• MOTIVATION  
• HISTORICAL REVIEW OF THE ABSORBING BOUNDARY CONDITIONS 
• ASYMMETRIC PERFECTLY MATCHED LAYER (APML) 
• NOVEL TWO-STEP PML FORMULATIONS (“PML-2SS” AND “PML-2SC”) & DISCRETIZATION 
•  FDTD  
•  PSTD  
•  PSATD  

• NUMERICAL RESULTS 
• DISPERSION RELATION ANALYSIS OF THE PML, PML-2SS AND PML-2SC 
• ABSORPTION EFFICIENCY ANALYSIS 
• TEST OF THE NEW PML FORMULATION IN LASER-PLASMA EM-PIC SIMULATIONS 

•CONCLUSION

2



BLAST ❜ 2018 @ LBNL7 May  2018

ABSORBING BOUNDARY CONDITIONS (ABCS)

‣ Engquist and Majda (based on 1st or 2nd order of the Taylor 
series expansion of                     )

‣ Trefethen-Halpern
‣ Higdon operator

MATCHED LAYER (ML)

HISTORICAL REVIEW OF THE 

MATERIAL-BASED ABCS
(use a layer of absorber material added at the 

outer boundary)
DERIVED FROM DIFFERENTIAL EQUATIONS 

(by factoring the wave equation and allowing 
solution that permits only outgoing waves)

ONE-WAY ABCS

p
(1� s2)p
(1� s2) ⇡ Pn(s)

Qn(s)

(impedance of material boundary was matched to the 
free-space impedance only @ normal incidence)
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(1) Normal incidence  
R(0) = 0

(2) Oblique incidence  

“Matching condition”
(�,�⇤)

Numerical electric/magnetic conductivities 
~ field decay in the absorbance medium(�,�⇤)

R(') = cos(')�1

cos(')+1

ABSORBING BOUNDARY CONDITIONS (ABCS)HISTORICAL REVIEW OF THE 
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BLAST ❜ 2018 @ LBNL7 May  2018

‣ Engquist and Majda (based on 1st or 2nd order of the Taylor 
series expansion of                     )

‣ Trefethen-Halpern
‣ Higdon operator

MATCHED LAYER (ML)

J-P. Berenger, J. Comput Phys., 114, 185-200 (1994)  


MATERIAL-BASED ABCS
(use a layer of absorber material added at the 

outer boundary)

PERFECTLY MATCHED LAYER (PML)

DERIVED FROM DIFFERENTIAL EQUATIONS 
(by factoring the wave equation and allowing 
solution that permits only outgoing waves)

ONE-WAY ABCS

p
(1� s2)p
(1� s2) ⇡ Pn(s)

Qn(s)

(impedance of material boundary was matched to the 
free-space impedance only @ normal incidence)

(Splitting fields into orthogonal components)

ABSORBING BOUNDARY CONDITIONS (ABCS)HISTORICAL REVIEW OF THE 
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PERFECTLY MATCHED LAYER 
(PML)

BLAST ❜ 2018 @ LBNL7 May  2018
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8' : R(') = 0 @ infinitesimal limit

while FDTD/PSTD introduce 
residual reflections.

&

• Field components split 
• Perfectly matched conditions

ABSORBING BOUNDARY CONDITIONS (ABCS)HISTORICAL REVIEW OF THE 
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BLAST ❜ 2018 @ LBNL7 May  2018

‣ Engquist and Majda (based on 1st or 2nd order of the Taylor 
series expansion of                     )

‣ Trefethen-Halpern
‣ Higdon operator

MATCHED LAYER (ML)

‣ Complex Coordinate Stretching PML (analytical 
continuation into the complex plane)

‣ Uniaxial PML (un-split PML)
‣ Nearly PML
‣ Convolutional PML
‣ Asymmetric PML (APML)

(    asymmetry in absorption rate for 
some setting of the extra coefficients)
9

J-P. Berenger, J. Comput Phys., 114, 185-200 (1994)  


MATERIAL-BASED ABCS
(use a layer of absorber material added at the 

outer boundary)

PERFECTLY MATCHED LAYER (PML)

DERIVED FROM DIFFERENTIAL EQUATIONS 
(by factoring the wave equation and allowing 
solution that permits only outgoing waves)

ONE-WAY ABCS

p
(1� s2)p
(1� s2) ⇡ Pn(s)

Qn(s)

(impedance of material boundary was matched to the 
free-space impedance only @ normal incidence)

(Splitting fields into orthogonal components)

J-L. Vay, J. Comput Phys., 183, 367-399 (2011)  
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BRIEF ARTICLE

THE AUTHOR

subsubsectionTask 1.1: Perfectly Matched Layer (PML) and Asymmetric Perfectly Matched Layer (APML)

It is often needed to simulate a system that is in empty space, requiring the implementation of open (or ’outgoing
wave’) boundary conditions (BC) with the Maxwell solver. The Perfectly Matched Layer (PML) [?] has become the

method of choice for open BC with wave equations, as it is relatively easy to implement, and o↵ers very e�cient

user-adjustable absorption rates. It consists in a variation of the wave equation used in the interior of the domain
(Maxwell’s equations in the present case) that o↵ers damping of the waves in a layer that surrounds the computational

domain with, at the infinitesimal limit, the same impedance as in the interior, and thus no reflection. Once discretized,

a PML’s impedance is not exactly the one of the interior domain for all angles and wavelengths, leading to small
spurious reflections whose amplitude varies with angle and wavelength.

This subsection is an extension of our previous work on the higher-order Asymmetric Perfectly Matched Layer

(APML) analysis [?]. Several tests have been performed on the comparison of the absorbance rate between Perfectly
Matched Layer (PML) and higher-order APML.

Description of the algorithm -. For the TE case, the original Berenger’s PML [?] writes in the following form,
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An asymmetric PML (APML) medium can be introduced [?] as generalization of the original Berenger’s PML
medium, by adding additional degrees of freedom in the form of additional numerical coe�cients and additional

terms:
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  if 
Matching conditions

8' : R(') = 0
@ infinitesimal limit
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ASYMMETRIC PERFECTLY 
MATCHED LAYER (APML)

3. Discretization of the PML

As a discrete space, we assume the ”Yee” grid staggered in space and time [1] (note that
application of the methods presented below can be readily extended to the discretization on a
nodal grid). The spatial layout of the E and H field-components is shown in Fig. 1 (b).

3.1. Standard second-order FDTD discretization
The standard second-order FDTD discretization of Eqs. (1)-(5), using exponential time-

stepping, writes (assuming �x = �y = �
⇤
x = �

⇤
y = 0),

Hzx|n+1/2
i+1/2, j+1/2 = e��

⇤
x�tHzx|n�1/2

i+1/2, j+1/2 �
1 � e��⇤x�t

�⇤x�x
c⇤x
c

⇣
Ey|n+1

j+1,k+1/2 � Ey|n+1
j,k+1/2

⌘
, (6)

Hzy|n+1/2
i+1/2, j+1/2 = e��

⇤
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where �x and �y denote the spatial cell size along x and y respectively, and �t correspond to the
time increment. The pair of subindices (i, j) denotes the center positions of the spatial cells (see
Fig. 1(b)), while the time step is denoted by integer superindex n.

3.2. Novel two-step discretization
We now set the coe�cients cx, cy, c⇤x, and c⇤y so as to derive a novel “two-step” formulation

of the PML.
Assuming the special choice of the coe�cients cx, cy, c⇤x, and c⇤y:
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, (10)
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1 � e��
(⇤)
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⇤
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⇤
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⌘i
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Note that at infinitesimal limit c(⇤)
x , c

(⇤)
y ! c when �t ! 0.
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3. Discretization of the PML

As a discrete space, we assume the ”Yee” grid staggered in space and time [1] (note that
application of the methods presented below can be readily extended to the discretization on a
nodal grid). The spatial layout of the E and H field-components is shown in Fig. 1 (b).
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where �x and �y denote the spatial cell size along x and y respectively, and �t correspond to the
time increment. The pair of subindices (i, j) denotes the center positions of the spatial cells (see
Fig. 1(b)), while the time step is denoted by integer superindex n.

3.2. Novel two-step discretization
We now set the coe�cients cx, cy, c⇤x, and c⇤y so as to derive a novel “two-step” formulation

of the PML.
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3. Discretization of the PML

As a discrete space, we assume the ”Yee” grid staggered in space and time [1] (note that
application of the methods presented below can be readily extended to the discretization on a
nodal grid). The spatial layout of the E and H field-components is shown in Fig. 1 (b).
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where �x and �y denote the spatial cell size along x and y respectively, and �t correspond to the
time increment. The pair of subindices (i, j) denotes the center positions of the spatial cells (see
Fig. 1(b)), while the time step is denoted by integer superindex n.

3.2. Novel two-step discretization
We now set the coe�cients cx, cy, c⇤x, and c⇤y so as to derive a novel “two-step” formulation

of the PML.
Assuming the special choice of the coe�cients cx, cy, c⇤x, and c⇤y:
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STANDARD 2ND-ORDER FDTD DISCRETIZATION (USING EXPONENTIAL TIME-STEPPING)

BLAST ❜ 2018 @ LBNL7 May  2018

3. Discretization of the PML

As a discrete space, we assume the ”Yee” grid staggered in space and time [1] (note that
application of the methods presented below can be readily extended to the discretization on a
nodal grid). The spatial layout of the E and H field-components is shown in Fig. 1 (b).

3.1. Standard second-order FDTD discretization
The standard second-order FDTD discretization of Eqs. (1)-(5), using exponential time-

stepping, writes (assuming �x = �y = �
⇤
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y = 0),
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⌘
, (9)

where �x and �y denote the spatial cell size along x and y respectively, and �t correspond to the
time increment. The pair of subindices (i, j) denotes the center positions of the spatial cells (see
Fig. 1(b)), while the time step is denoted by integer superindex n.

3.2. Novel two-step discretization
We now set the coe�cients cx, cy, c⇤x, and c⇤y so as to derive a novel “two-step” formulation

of the PML.
Assuming the special choice of the coe�cients cx, cy, c⇤x, and c⇤y:
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, (11)
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Note that at infinitesimal limit c(⇤)
x , c

(⇤)
y ! c when �t ! 0.
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STANDARD 2ND-ORDER FDTD DISCRETIZATION

TWO-STEP TIME-STAGGERED PML (“PML-2SS”)

BLAST ❜ 2018 @ LBNL7 May  2018

3.2.1. Two-step time-staggered PML (“PML-2SS”)
This choice of coe�cients enables a rewrite of the PML update as a two-step process

H⇤zx|n+1/2
i+1/2, j+1/2 = Hzx|n�1/2

i+1/2, j+1/2 �
�t
�x

⇣
Ey|ni+1, j+1/2 � Ey|ni, j+1/2

⌘
, (16)

H⇤zy|n+1/2
i+1/2, j+1/2 = Hzy|n�1/2

i+1/2, j+1/2 +
�t
�y

⇣
Ex|ni+1/2, j+1 � Ex|ni+1/2, j

⌘
, (17)

Hzx|n+1/2
i+1/2, j+1/2 = e��

⇤
x�tH⇤zx|n+1/2

i+1/2, j+1/2, (18)

Hzy|n+1/2
i+1/2, j+1/2 = e��

⇤
y�tH⇤zy|n+1/2

i+1/2, j+1/2, (19)

E⇤x|n+1
i+1/2, j = Ex|ni+1/2, j +

�t
�y

⇣
Hz|n+1/2

i+1/2, j+1/2 � Hz|n+1/2
i+1/2, j�1/2

⌘
, (20)

E⇤y |n+1
i, j+1/2 = Ey|ni, j+1/2 �

�t
�x

⇣
Hz|n+1/2

i+1/2, j+1/2 � Hz|n+1/2
i�1/2, j+1/2

⌘
, (21)

Ex|n+1
i+1/2, j = e��y�tE⇤x|n+1

i+1/2, j, (22)

Ey|n+1
i, j+1/2 = e��x�tE⇤y |n+1

i, j+1/2. (23)

where the magnetic and electric components are first pushed in vacuum, then scaled respectively
after each individual push in vacuum by e��⇤u�t and e��u�t in the direction u, for E and H, respec-
tively.

3.2.2. Two-step time-centered PML (“PML-2SC”)
An alternate formulation is based on a time-centered push of the field components in vacuum,

followed by the synchronized scaling of all the components

H⇤zx|n+1/2
i+1/2, j+1/2 = Hzx|ni+1/2, j+1/2 � 0.5

�t
�x

⇣
Ey|ni+1, j+1/2 � Ey|ni, j+1/2

⌘
, (24)

H⇤zy|n+1/2
i+1/2, j+1/2 = Hzy|ni+1/2, j+1/2 + 0.5

�t
�y

⇣
Ex|ni+1/2, j+1 � Ex|ni+1/2, j

⌘
, (25)

E⇤x|n+1
i+1/2, j = Ex|ni+1/2, j +

�t
�y

⇣
H⇤z |n+1/2

i+1/2, j+1/2 � H⇤z |n+1/2
i+1/2, j�1/2

⌘
, (26)

E⇤y |n+1
i, j+1/2 = Ey|ni, j+1/2 �

�t
�x

⇣
H⇤z |n+1/2

i+1/2, j+1/2 � H⇤z |n+1/2
i�1/2, j+1/2

⌘
, (27)

H⇤zx|n+1
i+1/2, j+1/2 = H⇤zx|n+1/2

i+1/2, j+1/2 � 0.5
�t
�x

⇣
E⇤y |n+1

i+1, j+1/2 � E⇤y |ni, j+1/2

⌘
, (28)

H⇤zy|n+1
i+1/2, j+1/2 = H⇤zy|n+1/2

i+1/2, j+1/2 + 0.5
�t
�y

⇣
E⇤x|ni+1/2, j+1 � E⇤x|ni+1/2, j

⌘
, (29)

Hzx|n+1
i+1/2, j+1/2 = e��

⇤
x�tH⇤zx|n+1

i+1/2, j+1/2, (30)

Hzy|n+1
i+1/2, j+1/2 = e��

⇤
y�tH⇤zy|n+1

i+1/2, j+1/2, (31)

Ex|n+1
i+1/2, j = e��y�tE⇤x|n+1

i+1/2, j, (32)

Ey|n+1
i, j+1/2 = e��x�tE⇤y |n+1

i, j+1/2. (33)

That is, at each time step, the field components E and H are updated in the following order:

• solve Maxwell’s equations in vacuum over one time step;
5

⇔(*)
Equivalently :
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STANDARD 2ND-ORDER FDTD DISCRETIZATION
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3.2.1. Two-step time-staggered PML (“PML-2SS”)
This choice of coe�cients enables a rewrite of the PML update as a two-step process
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where the magnetic and electric components are first pushed in vacuum, then scaled respectively
after each individual push in vacuum by e��⇤u�t and e��u�t in the direction u, for E and H, respec-
tively.

3.2.2. Two-step time-centered PML (“PML-2SC”)
An alternate formulation is based on a time-centered push of the field components in vacuum,

followed by the synchronized scaling of all the components

H⇤zx|n+1/2
i+1/2, j+1/2 = Hzx|ni+1/2, j+1/2 � 0.5

�t
�x

⇣
Ey|ni+1, j+1/2 � Ey|ni, j+1/2

⌘
, (24)

H⇤zy|n+1/2
i+1/2, j+1/2 = Hzy|ni+1/2, j+1/2 + 0.5

�t
�y

⇣
Ex|ni+1/2, j+1 � Ex|ni+1/2, j

⌘
, (25)

E⇤x|n+1
i+1/2, j = Ex|ni+1/2, j +

�t
�y

⇣
H⇤z |n+1/2

i+1/2, j+1/2 � H⇤z |n+1/2
i+1/2, j�1/2

⌘
, (26)

E⇤y |n+1
i, j+1/2 = Ey|ni, j+1/2 �

�t
�x

⇣
H⇤z |n+1/2

i+1/2, j+1/2 � H⇤z |n+1/2
i�1/2, j+1/2

⌘
, (27)

H⇤zx|n+1
i+1/2, j+1/2 = H⇤zx|n+1/2

i+1/2, j+1/2 � 0.5
�t
�x

⇣
E⇤y |n+1

i+1, j+1/2 � E⇤y |ni, j+1/2

⌘
, (28)

H⇤zy|n+1
i+1/2, j+1/2 = H⇤zy|n+1/2

i+1/2, j+1/2 + 0.5
�t
�y

⇣
E⇤x|ni+1/2, j+1 � E⇤x|ni+1/2, j

⌘
, (29)

Hzx|n+1
i+1/2, j+1/2 = e��

⇤
x�tH⇤zx|n+1

i+1/2, j+1/2, (30)

Hzy|n+1
i+1/2, j+1/2 = e��

⇤
y�tH⇤zy|n+1

i+1/2, j+1/2, (31)

Ex|n+1
i+1/2, j = e��y�tE⇤x|n+1

i+1/2, j, (32)

Ey|n+1
i, j+1/2 = e��x�tE⇤y |n+1

i, j+1/2. (33)

That is, at each time step, the field components E and H are updated in the following order:

• solve Maxwell’s equations in vacuum over one time step;
5

TWO-STEP TIME-CENTERED PML (“PML-2CS”)
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NOVEL TWO-STEP PML FORMULATION 

(1) SOLVE  MAXWELL’S EQUATIONS IN VACUUM OVER ONE TIME STEP 

(2) MULTIPLY UPDATED FIELD COMPONENTS BY CORRESPONDING PML’S DAMPING 
COEFFICIENTS 
• multiply updated field components by the corresponding PML’s damping

coe�cients e��
(⇤)
u �t.

By recasting the PML formulation in (i) a standard Maxwell push in vacuum and (ii) a simple
field damping in the PML, this two-step technique is very versatile and can be used as is with
any Maxwell solver for step (i) and without re-writing discretized equations for the PMLs.

3.3. Extension to High-order and Fourier-based Discretization
The PML-2SS and PML-2SC algorithms can be easily extended to other Maxwell solvers,

by simply replacing the first step of propagation in vacuum (the second damping step remaining
unchanged). Below, we briefly review di↵erent classes of Maxwell solvers that can be used in
the Maxwell push step of the two-step model and whose e↵ect on the APML e�ciency will be
tested in the section 5 of this manuscript.

3.3.1. High-Order Spatial Finite-Di↵erence
The discrete finite-di↵erence operator of the spatial derivative of p-order on staggered ”Yee”

grid writes:

@ fi, j
@u
⇡

p/2X

l=1

cp
l

( fi+l�1, j � fi�l, j)
�u

, u = {x, y} (34)

where cp
l , l = 1, 2, ..., p/2 are known as Fornberg coe�cients [14], calculated by the Taylor

expansion based closed-form formulas [15], and given for a staggered grid by [16]:

cp
l =

(�1)l+1161�p/2(p � 1)!2

(2l � 1)2(p/2 + l � 1)!(p/2 � l)!(p/2 � 1)!2 , l = 1, 2, ..., p/2. (35)

An arbitrary p-order discretization of the split-form of Maxwell’s equations in vacuum is thus
given by

Hzx|n+1/2
i+1/2, j+1/2 = Hzx|n�1/2

i+1/2, j+1/2 �
�t
�x

p/2X

l=1

cp
l

⇣
Ey|ni+l, j+1/2 � Ey|ni�(l�1), j+1/2

⌘
, (36)

Hzy|n+1/2
i+1/2, j+1/2 = Hzy|n�1/2

i+1/2, j+1/2 +
�t
�y

p/2X

l=1

cp
l

⇣
Ex|ni+1/2, j+1+l � Ex|ni+1/2, j�(l�1)

⌘
, (37)

Ex|n+1
i+1/2, j = Ex|ni+1/2, j +

�t
�y

p/2X

l=1

cp
l

⇣
Hz|n+1/2

i+1/2+(l�1), j+1/2 � Hz|n+1/2
i+1/2�l, j�1/2

⌘
, (38)

Ey|n+1
i, j+1/2 = Ey|ni, j+1/2 �

�t
�x

p/2X

l=1

cp
l

⇣
Hz|n+1/2

i+1/2, j+1/2+(l�1) � Hz|n+1/2
i�1/2, j+1/2�l

⌘
. (39)

Equations (36)-(39) can be used in place of the corresponding second-order Maxwell FDTD
equations in vacuum in the PML-2SS and PML-2SC algorithms.

6

At each time step, the field components E and H are updated in the following order:
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!
Novel two-step technique is very versatile and can be used 
as is with any Maxwell solver for step (1) and without re-
writing discretized equations for the PMLs.
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• HIGH-ORDER FDTD DISCRETIZATION  
• PSTD DISCRETIZATION  
• PSATD DISCRETIZATION

✔
✔
✔ (under assumption that source terms are constant over one time interval 

⇒ Maxwell’s equation can be integrated analytically one time step)

DISCRETIZATION - EXTENSION TO HIGH-ORDER FDTD, PSTD & PSATD
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Dispersion relation equation as quadratic equation

DISPERSION RELATION ANALYSIS OF THE PML, PML-2SS AND PML-2SC

BLAST ❜ 2018 @ LBNL7 May  2018

PML:

PML-2CS:

where known coe�cients C = cos(kc�t) and S = sin(kc�t), and k̂ = [k]/k.
Note that the PSATD algorithm at order p is the limit of the FDTD algorithm at the same

order p when �t ! 0.
Although a time-leapfrogged version of PSATD exists [13], it is not of practical interest for

usage in Particle-In-Cell simulations where both electric and magnetic components need to be
explicitly known at the same time for pushing particles. Hence, we do consider only the time-
centered version here, and thus only the coupling of PSATD with the PML-2SC algorithm.

4. Dispersion relation analysis of the PML, PML-2SS and PML-2SC

For simplicity, we restrict ourselves to the analysis of the dispersion relation of the normally
incident monochromatic plane wave on the PML, PML-2SS and PML-2SC media. The PML,
PML-2SS and PML-2SC equations can be rewritten as finite-di↵erence equations of E or H only.
After some algebraic manipulation, the following relations are obtained for the one-dimensional
PML/PML-2SS formulation of arbitrary p-order:

Ey|n+1
j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤�k,mEy|nj , (51)

and, for the PML-2SC formulation:

En+1
y, j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤
(↵ + ↵⇤)

2
�k,mEy|nj , (52)

where �k,mEn
y, j =

Pp/2
k=1
Pp/2

m=1 cp
k cp

m[Ey|nj+k+m�1 � Ey|nj+k�m � Ey|nj�k+m + Ey|nj�k�m+1].
The derivation of the dispersion relation is based on the substitution of a monochromatic

traveling plane-wave solution into the corresponding PML medium formulation. Assuming the
propagation of a wave of the form E0ei(!t�kx x), we obtain the dispersion relation valid for all
abovementioned PML formulations and di↵ering only by a set of coe�cients (to be given below):

e2i!�t + bei!�t + c = 0, (53)

which gives an analytic representation of !(k) in the form

!(k) = � i
�t

ln
⇣�b ±

p
b2 � 4c

2

⌘
. (54)

It should be noticed that the quadratic Eq. (53) o↵ers two solutions. In our analysis, we use the
positive sign solution and disregard the negative sign “parasitic” solution (see [18]). The PML’s
coe�cients along with the coe�cients of the quadratic Eq. (53) are given by:

• PML: ↵(⇤) = e��(⇤)�t, �(⇤) = c 1�e��(⇤)�t

�(⇤)�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SS: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SC: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤)(1 + ��⇤�km/2), c = ↵↵⇤,

where �km =
Pp/2

k=1
Pp/2

m=1 cp
k cp

m[e�ik�x(k+m�1) � e�ik�x(k�m) � eik�x(k�m) + eik�x(k+m�1)].
Figure 2 shows the real and imaginary parts of the 1-D dispersion relation solution of the

PML, PML-2SS and PML-2SC formulations for di↵erent values of � (uniform across the do-
main) and time steps, in the case of 2nd and 32nd-order PSTD operators.
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where known coe�cients C = cos(kc�t) and S = sin(kc�t), and k̂ = [k]/k.
Note that the PSATD algorithm at order p is the limit of the FDTD algorithm at the same

order p when �t ! 0.
Although a time-leapfrogged version of PSATD exists [13], it is not of practical interest for

usage in Particle-In-Cell simulations where both electric and magnetic components need to be
explicitly known at the same time for pushing particles. Hence, we do consider only the time-
centered version here, and thus only the coupling of PSATD with the PML-2SC algorithm.

4. Dispersion relation analysis of the PML, PML-2SS and PML-2SC

For simplicity, we restrict ourselves to the analysis of the dispersion relation of the normally
incident monochromatic plane wave on the PML, PML-2SS and PML-2SC media. The PML,
PML-2SS and PML-2SC equations can be rewritten as finite-di↵erence equations of E or H only.
After some algebraic manipulation, the following relations are obtained for the one-dimensional
PML/PML-2SS formulation of arbitrary p-order:

Ey|n+1
j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤�k,mEy|nj , (51)

and, for the PML-2SC formulation:

En+1
y, j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤
(↵ + ↵⇤)

2
�k,mEy|nj , (52)

where �k,mEn
y, j =

Pp/2
k=1
Pp/2

m=1 cp
k cp

m[Ey|nj+k+m�1 � Ey|nj+k�m � Ey|nj�k+m + Ey|nj�k�m+1].
The derivation of the dispersion relation is based on the substitution of a monochromatic

traveling plane-wave solution into the corresponding PML medium formulation. Assuming the
propagation of a wave of the form E0ei(!t�kx x), we obtain the dispersion relation valid for all
abovementioned PML formulations and di↵ering only by a set of coe�cients (to be given below):

e2i!�t + bei!�t + c = 0, (53)

which gives an analytic representation of !(k) in the form

!(k) = � i
�t

ln
⇣�b ±

p
b2 � 4c

2

⌘
. (54)

It should be noticed that the quadratic Eq. (53) o↵ers two solutions. In our analysis, we use the
positive sign solution and disregard the negative sign “parasitic” solution (see [18]). The PML’s
coe�cients along with the coe�cients of the quadratic Eq. (53) are given by:

• PML: ↵(⇤) = e��(⇤)�t, �(⇤) = c 1�e��(⇤)�t

�(⇤)�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SS: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SC: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤)(1 + ��⇤�km/2), c = ↵↵⇤,

where �km =
Pp/2

k=1
Pp/2

m=1 cp
k cp

m[e�ik�x(k+m�1) � e�ik�x(k�m) � eik�x(k�m) + eik�x(k+m�1)].
Figure 2 shows the real and imaginary parts of the 1-D dispersion relation solution of the

PML, PML-2SS and PML-2SC formulations for di↵erent values of � (uniform across the do-
main) and time steps, in the case of 2nd and 32nd-order PSTD operators.
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where known coe�cients C = cos(kc�t) and S = sin(kc�t), and k̂ = [k]/k.
Note that the PSATD algorithm at order p is the limit of the FDTD algorithm at the same

order p when �t ! 0.
Although a time-leapfrogged version of PSATD exists [13], it is not of practical interest for

usage in Particle-In-Cell simulations where both electric and magnetic components need to be
explicitly known at the same time for pushing particles. Hence, we do consider only the time-
centered version here, and thus only the coupling of PSATD with the PML-2SC algorithm.

4. Dispersion relation analysis of the PML, PML-2SS and PML-2SC

For simplicity, we restrict ourselves to the analysis of the dispersion relation of the normally
incident monochromatic plane wave on the PML, PML-2SS and PML-2SC media. The PML,
PML-2SS and PML-2SC equations can be rewritten as finite-di↵erence equations of E or H only.
After some algebraic manipulation, the following relations are obtained for the one-dimensional
PML/PML-2SS formulation of arbitrary p-order:

Ey|n+1
j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤�k,mEy|nj , (51)

and, for the PML-2SC formulation:

En+1
y, j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤
(↵ + ↵⇤)

2
�k,mEy|nj , (52)

where �k,mEn
y, j =

Pp/2
k=1
Pp/2

m=1 cp
k cp

m[Ey|nj+k+m�1 � Ey|nj+k�m � Ey|nj�k+m + Ey|nj�k�m+1].
The derivation of the dispersion relation is based on the substitution of a monochromatic

traveling plane-wave solution into the corresponding PML medium formulation. Assuming the
propagation of a wave of the form E0ei(!t�kx x), we obtain the dispersion relation valid for all
abovementioned PML formulations and di↵ering only by a set of coe�cients (to be given below):

e2i!�t + bei!�t + c = 0, (53)

which gives an analytic representation of !(k) in the form

!(k) = � i
�t

ln
⇣�b ±

p
b2 � 4c

2

⌘
. (54)

It should be noticed that the quadratic Eq. (53) o↵ers two solutions. In our analysis, we use the
positive sign solution and disregard the negative sign “parasitic” solution (see [18]). The PML’s
coe�cients along with the coe�cients of the quadratic Eq. (53) are given by:

• PML: ↵(⇤) = e��(⇤)�t, �(⇤) = c 1�e��(⇤)�t

�(⇤)�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SS: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SC: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤)(1 + ��⇤�km/2), c = ↵↵⇤,

where �km =
Pp/2

k=1
Pp/2

m=1 cp
k cp

m[e�ik�x(k+m�1) � e�ik�x(k�m) � eik�x(k�m) + eik�x(k+m�1)].
Figure 2 shows the real and imaginary parts of the 1-D dispersion relation solution of the

PML, PML-2SS and PML-2SC formulations for di↵erent values of � (uniform across the do-
main) and time steps, in the case of 2nd and 32nd-order PSTD operators.
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PML-2SS:

where known coe�cients C = cos(kc�t) and S = sin(kc�t), and k̂ = [k]/k.
Note that the PSATD algorithm at order p is the limit of the FDTD algorithm at the same

order p when �t ! 0.
Although a time-leapfrogged version of PSATD exists [13], it is not of practical interest for

usage in Particle-In-Cell simulations where both electric and magnetic components need to be
explicitly known at the same time for pushing particles. Hence, we do consider only the time-
centered version here, and thus only the coupling of PSATD with the PML-2SC algorithm.

4. Dispersion relation analysis of the PML, PML-2SS and PML-2SC

For simplicity, we restrict ourselves to the analysis of the dispersion relation of the normally
incident monochromatic plane wave on the PML, PML-2SS and PML-2SC media. The PML,
PML-2SS and PML-2SC equations can be rewritten as finite-di↵erence equations of E or H only.
After some algebraic manipulation, the following relations are obtained for the one-dimensional
PML/PML-2SS formulation of arbitrary p-order:

Ey|n+1
j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤�k,mEy|nj , (51)

and, for the PML-2SC formulation:

En+1
y, j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤
(↵ + ↵⇤)

2
�k,mEy|nj , (52)

where �k,mEn
y, j =

Pp/2
k=1
Pp/2

m=1 cp
k cp

m[Ey|nj+k+m�1 � Ey|nj+k�m � Ey|nj�k+m + Ey|nj�k�m+1].
The derivation of the dispersion relation is based on the substitution of a monochromatic

traveling plane-wave solution into the corresponding PML medium formulation. Assuming the
propagation of a wave of the form E0ei(!t�kx x), we obtain the dispersion relation valid for all
abovementioned PML formulations and di↵ering only by a set of coe�cients (to be given below):

e2i!�t + bei!�t + c = 0, (53)

which gives an analytic representation of !(k) in the form

!(k) = � i
�t

ln
⇣�b ±

p
b2 � 4c

2

⌘
. (54)

It should be noticed that the quadratic Eq. (53) o↵ers two solutions. In our analysis, we use the
positive sign solution and disregard the negative sign “parasitic” solution (see [18]). The PML’s
coe�cients along with the coe�cients of the quadratic Eq. (53) are given by:

• PML: ↵(⇤) = e��(⇤)�t, �(⇤) = c 1�e��(⇤)�t

�(⇤)�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SS: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SC: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤)(1 + ��⇤�km/2), c = ↵↵⇤,

where �km =
Pp/2

k=1
Pp/2

m=1 cp
k cp

m[e�ik�x(k+m�1) � e�ik�x(k�m) � eik�x(k�m) + eik�x(k+m�1)].
Figure 2 shows the real and imaginary parts of the 1-D dispersion relation solution of the

PML, PML-2SS and PML-2SC formulations for di↵erent values of � (uniform across the do-
main) and time steps, in the case of 2nd and 32nd-order PSTD operators.
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where known coe�cients C = cos(kc�t) and S = sin(kc�t), and k̂ = [k]/k.
Note that the PSATD algorithm at order p is the limit of the FDTD algorithm at the same

order p when �t ! 0.
Although a time-leapfrogged version of PSATD exists [13], it is not of practical interest for

usage in Particle-In-Cell simulations where both electric and magnetic components need to be
explicitly known at the same time for pushing particles. Hence, we do consider only the time-
centered version here, and thus only the coupling of PSATD with the PML-2SC algorithm.

4. Dispersion relation analysis of the PML, PML-2SS and PML-2SC

For simplicity, we restrict ourselves to the analysis of the dispersion relation of the normally
incident monochromatic plane wave on the PML, PML-2SS and PML-2SC media. The PML,
PML-2SS and PML-2SC equations can be rewritten as finite-di↵erence equations of E or H only.
After some algebraic manipulation, the following relations are obtained for the one-dimensional
PML/PML-2SS formulation of arbitrary p-order:

Ey|n+1
j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤�k,mEy|nj , (51)

and, for the PML-2SC formulation:

En+1
y, j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤
(↵ + ↵⇤)

2
�k,mEy|nj , (52)

where �k,mEn
y, j =

Pp/2
k=1
Pp/2

m=1 cp
k cp

m[Ey|nj+k+m�1 � Ey|nj+k�m � Ey|nj�k+m + Ey|nj�k�m+1].
The derivation of the dispersion relation is based on the substitution of a monochromatic

traveling plane-wave solution into the corresponding PML medium formulation. Assuming the
propagation of a wave of the form E0ei(!t�kx x), we obtain the dispersion relation valid for all
abovementioned PML formulations and di↵ering only by a set of coe�cients (to be given below):

e2i!�t + bei!�t + c = 0, (53)

which gives an analytic representation of !(k) in the form

!(k) = � i
�t

ln
⇣�b ±

p
b2 � 4c

2

⌘
. (54)

It should be noticed that the quadratic Eq. (53) o↵ers two solutions. In our analysis, we use the
positive sign solution and disregard the negative sign “parasitic” solution (see [18]). The PML’s
coe�cients along with the coe�cients of the quadratic Eq. (53) are given by:

• PML: ↵(⇤) = e��(⇤)�t, �(⇤) = c 1�e��(⇤)�t

�(⇤)�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SS: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SC: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤)(1 + ��⇤�km/2), c = ↵↵⇤,

where �km =
Pp/2

k=1
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Figure 2 shows the real and imaginary parts of the 1-D dispersion relation solution of the

PML, PML-2SS and PML-2SC formulations for di↵erent values of � (uniform across the do-
main) and time steps, in the case of 2nd and 32nd-order PSTD operators.
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It should be noticed that the quadratic Eq. (53) o↵ers two solutions. In our analysis, we use the
positive sign solution and disregard the negative sign “parasitic” solution (see [18]). The PML’s
coe�cients along with the coe�cients of the quadratic Eq. (53) are given by:
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m[e�ik�x(k+m�1) � e�ik�x(k�m) � eik�x(k�m) + eik�x(k+m�1)].
Figure 2 shows the real and imaginary parts of the 1-D dispersion relation solution of the

PML, PML-2SS and PML-2SC formulations for di↵erent values of � (uniform across the do-
main) and time steps, in the case of 2nd and 32nd-order PSTD operators.

8

Note only positive sign solution has been considered, while the negative sign (``parasitic”) solution has been disregard 
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DISPERSION RELATION ANALYSIS OF THE PML, PML-2SS AND PML-2SC
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� = �⇤ = 0.64 � = �⇤ = 5.76
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Im[ω(k)] ~ damping of waves
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SIMULATION PARAMETERS

an exact calculation of the total plane wave reflection coe�cient, as it takes into account all
multiple transmissions/reflections caused by each row/column of cells and considers all possible
“secondary sources” that radiate, couple and contribute to the total reflection coe�cient for any
p-order stencil (see [16] for details).

5.1. Simulation Parameters
All numerical simulations have been performed on a 2-D uniform (�x = �y) staggered “Yee”

grid of dimension (Nx + 2Npml)�x ⇥ Ny�y with time step c�t/�x = 0.4 (which is below the CFL
condition in 1D, 2D and 3D for any order p). A schematic representation of the right-hand side
of the simulation domain is shown in Fig. 1 (a). We assume that an EM signal is launched at the
center of the simulation domain at t = 0, propagating in opposite directions at oblique incidence
angle, '. On the left and right boundaries of the simulation domain, a PML medium is set, while
periodic boundary conditions (PBC) are applied on the upper and lower boundaries. Following
[8], we used the quadratic PML’s damping function given by:

�xi = �max
⇣ i�x
�

⌘2
, i = 0, ..,Npml (55)

where Npml = 20 is the depth of the APML medium (in terms of the number of cells), �max =
4c/�x and � = 5�x. Since the E and H fields are staggered in space, the damping function �⇤ is
defined as �⇤ = �i+1/2.

The incident signal is given by H(t,!) = h(t) sin(!t+yk0 sin'), injected at a fixed wavenum-
ber k0 with a Harris function h(t) temporal profile,

h(t) =

8>><
>>:

1
32

⇣
10 � 15 cos( 2⇡ct

L ) + 6 cos( 4⇡ct
L ) � cos( 6⇡ct

L )
⌘
, if 0 < ct

L < 1
0, otherwise.

(56)

Here, ' = arctan(ky/kx) is the incidence angle, c is the speed of light, ! is the angular frequency,
given by the numerical dispersion relation of the chosen algorithm (given in Table A.1) and L =
0.5Nx�x is the distance along x axis from injection point to the APML. Because of the PBC at
y = 0 and y = Ny�y, we require the transverse wavenumber to be calculated as ky = 2⇡N/(Ny�y)
with N 2 N, while the longitudinal wavenumber is given by k2

x = k2
0 � k2

y . It should be noted
that the Harris function is chosen for its quasi-monochromatic nature, which enables a precise
evaluation of the reflection coe�cient at a given frequency. The time-dependent amplitude of the
Harris function along with its Fourier transform are given in Fig. 3.

The reflection coe�cient of the TE plane wave striking the APML medium can be calculated
as a ratio of the reflected field energy over the incident one,

Rnum(!, t) =

vut P
i, j |Einc

i j |2 + c2|Binc
i j |2

P
i, j |Ere f

i j |2 + c2|Bre f
i j |2
. (57)

5.2. Normal incidence at order 2
Figure 4 shows the comparison of the reflection coe�cient as a function of the normalized

wavelength �/�x for a plane wave striking a PML, PML-2SS or PML-2SC medium at normal
incidence (' = 0), computed with an analytical “p-source” model (solid lines) [16] and from
simulations using the PSTD2 method (markers).

10

Harris function (as temporal profile)Schematic 2D representation of the TE 
plane-wave striking right-hand APML 
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COMPARISON OF THE REFLECTION COEFFICIENT @ NORMALLY INCIDENT PLANE WAVE

numerical calculation using PSTD2
theory (“p”-source model ) *

CFL: dt=0.4dx/c  
NPML=20

Numerical & analytical results confirms predictions made by numerical dispersion analysis:

✔ RPML-2SC ~ RPML @ all wavelength  

✔ RPML-2SS differs from RPML (higher R @ short wavelength & lower R @ long  wavelength) 

*H. Vincenti, J.L. Vay , J. Comput Phys. Communications 200, 147-167, (2016)
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PML, PML-2SS, PML-2SC: PSTDP (P=2,8,32,64) VS. THEORY
@ NORMALLY INCIDENT PLANE-WAVE

BLAST ❜ 2018 @ LBNL7 May  2018

numerical calculation using PSTDp
theory (“p”-source model )

CFL: dt=0.4dx/c  
NPML=20
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PML, PML-2SS, PML-2SC: PSTDP (P=2,8,32,64) VS. THEORY

BLAST ❜ 2018 @ LBNL7 May  2018

numerical calculation using PSTDp
theory (“p”-source model )

@ OBLIQUE INCIDENT PLANE-WAVE @ �/dx = 4
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PML-2SC: PSTD64, PSTD64NS (NS=2,8,16,32) AND PSATD∞

BLAST ❜ 2018 @ LBNL7 May  2018

numerical calculation using PSTDpNs or PSTD∞

Ns is the order of sub-cycling in time (Ns = m: Δt/m) 
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TEST OF THE NEW TWO-STEP FORMULATION IN LASER PLASMA EM-PIC SIMULATION

BLAST ❜ 2018 @ LBNL7 May  2018

Simulation of 2D laser-plasma mirror interaction @ ultra-high intensity 
performed with WARP+PXR and the new PML-2SC formulation
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boundary w/o spurious reflection;

Laser field reflects from plasma mirror ☛ 
Harmonic generation in the reflected field

Reflected field approached right PML 
boundary  ☛ well absorbed 

T is the laser period
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Novel “two-step” formulation has been introduced (starting from the standard FDTD then 
applying to arbitrary-order PSTD and PSATD solvers):

Numerical dispersion analysis: PML-2SC’s velocity and damping rates ~ standard (Berenger’s) PML

SUMMARY

Simulation & analytical analysis: absorption rate of the PML-2SC’s is preserved at any order of the 
solver, including at the limit of ∞ order, validating its applicability with PSATD Maxwell’s solvers 

✓Time-staggered “PML-2SS”
✓Time centered “PML-2CS”

New PML formulation has been successfully implemented in a PIC code & applied to 
challenging modeling of plasma mirror 

RESTRICTIONS AND FUTURE STUDIES
Study was restricted to the extension of the split formulation of the PML to PSATD. Further 
studies will examine the applicability to unspilt formulation (e.g., Uniaxial PML).

๏ 

๏ 
๏ 

๏ 
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where known coe�cients C = cos(kc�t) and S = sin(kc�t), and k̂ = [k]/k.
Note that the PSATD algorithm at order p is the limit of the FDTD algorithm at the same

order p when �t ! 0.
Although a time-leapfrogged version of PSATD exists [13], it is not of practical interest for

usage in Particle-In-Cell simulations where both electric and magnetic components need to be
explicitly known at the same time for pushing particles. Hence, we do consider only the time-
centered version here, and thus only the coupling of PSATD with the PML-2SC algorithm.

4. Dispersion relation analysis of the PML, PML-2SS and PML-2SC

For simplicity, we restrict ourselves to the analysis of the dispersion relation of the normally
incident monochromatic plane wave on the PML, PML-2SS and PML-2SC media. The PML,
PML-2SS and PML-2SC equations can be rewritten as finite-di↵erence equations of E or H only.
After some algebraic manipulation, the following relations are obtained for the one-dimensional
PML/PML-2SS formulation of arbitrary p-order:

Ey|n+1
j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤�k,mEy|nj , (51)

and, for the PML-2SC formulation:

En+1
y, j = (↵ + ↵⇤)Ey|nj � ↵↵⇤Ey|n�1

j + ��⇤
(↵ + ↵⇤)

2
�k,mEy|nj , (52)

where �k,mEn
y, j =

Pp/2
k=1
Pp/2

m=1 cp
k cp

m[Ey|nj+k+m�1 � Ey|nj+k�m � Ey|nj�k+m + Ey|nj�k�m+1].
The derivation of the dispersion relation is based on the substitution of a monochromatic

traveling plane-wave solution into the corresponding PML medium formulation. Assuming the
propagation of a wave of the form E0ei(!t�kx x), we obtain the dispersion relation valid for all
abovementioned PML formulations and di↵ering only by a set of coe�cients (to be given below):

e2i!�t + bei!�t + c = 0, (53)

which gives an analytic representation of !(k) in the form

!(k) = � i
�t

ln
⇣�b ±

p
b2 � 4c

2

⌘
. (54)

It should be noticed that the quadratic Eq. (53) o↵ers two solutions. In our analysis, we use the
positive sign solution and disregard the negative sign “parasitic” solution (see [18]). The PML’s
coe�cients along with the coe�cients of the quadratic Eq. (53) are given by:

• PML: ↵(⇤) = e��(⇤)�t, �(⇤) = c 1�e��(⇤)�t

�(⇤)�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SS: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SC: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤)(1 + ��⇤�km/2), c = ↵↵⇤,

where �km =
Pp/2

k=1
Pp/2

m=1 cp
k cp

m[e�ik�x(k+m�1) � e�ik�x(k�m) � eik�x(k�m) + eik�x(k+m�1)].
Figure 2 shows the real and imaginary parts of the 1-D dispersion relation solution of the

PML, PML-2SS and PML-2SC formulations for di↵erent values of � (uniform across the do-
main) and time steps, in the case of 2nd and 32nd-order PSTD operators.
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propagation of a wave of the form E0ei(!t�kx x), we obtain the dispersion relation valid for all
abovementioned PML formulations and di↵ering only by a set of coe�cients (to be given below):

e2i!�t + bei!�t + c = 0, (53)

which gives an analytic representation of !(k) in the form

!(k) = � i
�t

ln
⇣�b ±

p
b2 � 4c

2

⌘
. (54)

It should be noticed that the quadratic Eq. (53) o↵ers two solutions. In our analysis, we use the
positive sign solution and disregard the negative sign “parasitic” solution (see [18]). The PML’s
coe�cients along with the coe�cients of the quadratic Eq. (53) are given by:

• PML: ↵(⇤) = e��(⇤)�t, �(⇤) = c 1�e��(⇤)�t

�(⇤)�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SS: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤) � ��⇤�km, c = ↵↵⇤;

• PML-2SC: ↵(⇤) = e��(⇤)�t, �(⇤) = c �t
�x ; b = �(↵ + ↵⇤)(1 + ��⇤�km/2), c = ↵↵⇤,

where �km =
Pp/2

k=1
Pp/2

m=1 cp
k cp

m[e�ik�x(k+m�1) � e�ik�x(k�m) � eik�x(k�m) + eik�x(k+m�1)].
Figure 2 shows the real and imaginary parts of the 1-D dispersion relation solution of the

PML, PML-2SS and PML-2SC formulations for di↵erent values of � (uniform across the do-
main) and time steps, in the case of 2nd and 32nd-order PSTD operators.
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3.3.2. Pseudo-Spectral Time-Domain Discretization
The Pseudo-Spectral Time-Domain (PSTD) method is based on solving Maxwell’s equa-

tions by advancing electromagnetic fields in Fourier space (k-space), while second-order time
Leapfrog di↵erentiation is retained in real space [17, 6, 10]. The field derivative with respect to
the spatial coordinate u (u = x or y) is evaluated in Fourier space

@ f (u)
@u

=
@

@u

Z 1

�1
F [ f (u)]eikuudku = F �1ikuF [ f (u)] (40)

where F and F �1 denote the forward and inverse Fourier transforms, respectively; k is the
wavevector of the length k = (k2

x + k2
y + k2

z )1/2. We note that the derivative evaluated in Fourier
space by Eq. (40) is the limit of finite-di↵erence at order p (Eq. (34)) when p! 1.

The extension of Eq. (40) to arbitrary finite order p is given by representing rp f in terms of
the Fourier integral, and further applying the convolution theorem, giving

@ f (u)
@u

= F �1i[ku]pF [ f (u)], (41)

⇥
ku
⇤

p =
2
�u

p/2X

l=1

cp
l sin
⇣
(2l � 1)

ku�u
2

⌘
, (42)

where [ku]p, with u = (x or y), corresponds to the p-order wavenumber components.
Following the notation used in the previous subsections and by applying spatial Fourier trans-

forms, the split-form of Maxwell equations in vacuum at order p is reformulated as follows,

Hzx|n+1/2
i+1/2, j+1/2 = Hzx|n�1/2

i+1/2, j+1/2 � �t
⇣
F �1i[kx]eikx�x/2F

⇣
Ey|ni+1/2, j+1/2

⌘⌘
, (43)

Hzy|n+1/2
i+1/2, j+1/2 = Hzy|n�1/2

i+1/2, j+1/2 + �t
⇣
F �1i[ky]eiky�y/2F

⇣
Ex|ni+1/2, j+1/2

⌘⌘
, (44)

Ex|n+1
i+1/2, j = Ex|ni+1/2, j + �t

⇣
F �1i[ky]e�iky�y/2F

⇣
Hz|n+1/2

i+1/2, j

⌘⌘
, (45)

Ey|n+1
i, j+1/2 = Ey|ni, j+1/2 � �t

⇣
F �1i[kx]e�ikx�x/2F

⇣
Hz|n+1/2

i, j+1/2

⌘⌘
. (46)

Here, the terms eikx�x/2 and eiky�y/2 correspond to the space shifts along x and y axes on the
staggered ”Yee” grid for Ey, while e�ikx�x/2 and e�iky�y/2 are the shifts for Hz [10].

Equations (43)-(46) can be used in place of the corresponding second-order Maxwell FDTD
equations in vacuum in the PML-2SS and PML-2SC algorithms, and are more advantageous, in
term of computational cost, than their finite-di↵erence counterpart for simulations that require
high-order accuracy [18].

3.3.3. Pseudo-Spectral Analytical Time-Domain Discretization
Maxwell’s equations in vacuum can be integrated analytically in Fourier space over one time

step, provided that the source terms are constant over the time interval [7, 13]. The resulting
algorithm is given by (omitting the source terms):

Hzx|n+1
i+1/2, j+1/2 = F �1C

⇣
FHzx|ni+1/2, j+1/2

⌘
�
⇣
F �1iS k̂xeikx�y/2

⇣
F Ey|ni+1/2, j+1/2

⌘⌘
, (47)

Hzy|n+1
i+1/2, j+1/2 = F �1C

⇣
FHzy|ni+1/2, j+1/2

⌘
+
⇣
F �1iS k̂yeiky�y/2

⇣
F Ex|ni+1/2, j+1/2

⌘⌘
, (48)

Ex|n+1
i+1/2, j = F �1C

⇣
F Ex|ni+1/2, j

⌘
+
⇣
F �1iS k̂ye�iky�y/2

⇣
FHz|ni+1/2, j

⌘⌘
, (49)

Ey|n+1
i, j+1/2 = F �1C

⇣
F Ey|ni, j+1/2

⌘
�
⇣
F �1iS k̂xe�ikx�x/2

⇣
FHz|ni, j+1/2

⌘⌘
, (50)
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The Pseudo-Spectral Time-Domain (PSTD) method is based on solving Maxwell’s equa-

tions by advancing electromagnetic fields in Fourier space (k-space), while second-order time
Leapfrog di↵erentiation is retained in real space [17, 6, 10]. The field derivative with respect to
the spatial coordinate u (u = x or y) is evaluated in Fourier space

@ f (u)
@u

=
@

@u

Z 1

�1
F [ f (u)]eikuudku = F �1ikuF [ f (u)] (40)

where F and F �1 denote the forward and inverse Fourier transforms, respectively; k is the
wavevector of the length k = (k2

x + k2
y + k2

z )1/2. We note that the derivative evaluated in Fourier
space by Eq. (40) is the limit of finite-di↵erence at order p (Eq. (34)) when p! 1.

The extension of Eq. (40) to arbitrary finite order p is given by representing rp f in terms of
the Fourier integral, and further applying the convolution theorem, giving

@ f (u)
@u

= F �1i[ku]pF [ f (u)], (41)

⇥
ku
⇤

p =
2
�u

p/2X

l=1

cp
l sin
⇣
(2l � 1)

ku�u
2

⌘
, (42)

where [ku]p, with u = (x or y), corresponds to the p-order wavenumber components.
Following the notation used in the previous subsections and by applying spatial Fourier trans-

forms, the split-form of Maxwell equations in vacuum at order p is reformulated as follows,

Hzx|n+1/2
i+1/2, j+1/2 = Hzx|n�1/2

i+1/2, j+1/2 � �t
⇣
F �1i[kx]eikx�x/2F

⇣
Ey|ni+1/2, j+1/2

⌘⌘
, (43)

Hzy|n+1/2
i+1/2, j+1/2 = Hzy|n�1/2

i+1/2, j+1/2 + �t
⇣
F �1i[ky]eiky�y/2F

⇣
Ex|ni+1/2, j+1/2

⌘⌘
, (44)

Ex|n+1
i+1/2, j = Ex|ni+1/2, j + �t

⇣
F �1i[ky]e�iky�y/2F

⇣
Hz|n+1/2

i+1/2, j

⌘⌘
, (45)

Ey|n+1
i, j+1/2 = Ey|ni, j+1/2 � �t

⇣
F �1i[kx]e�ikx�x/2F

⇣
Hz|n+1/2

i, j+1/2

⌘⌘
. (46)

Here, the terms eikx�x/2 and eiky�y/2 correspond to the space shifts along x and y axes on the
staggered ”Yee” grid for Ey, while e�ikx�x/2 and e�iky�y/2 are the shifts for Hz [10].

Equations (43)-(46) can be used in place of the corresponding second-order Maxwell FDTD
equations in vacuum in the PML-2SS and PML-2SC algorithms, and are more advantageous, in
term of computational cost, than their finite-di↵erence counterpart for simulations that require
high-order accuracy [18].

3.3.3. Pseudo-Spectral Analytical Time-Domain Discretization
Maxwell’s equations in vacuum can be integrated analytically in Fourier space over one time

step, provided that the source terms are constant over the time interval [7, 13]. The resulting
algorithm is given by (omitting the source terms):

Hzx|n+1
i+1/2, j+1/2 = F �1C

⇣
FHzx|ni+1/2, j+1/2

⌘
�
⇣
F �1iS k̂xeikx�y/2

⇣
F Ey|ni+1/2, j+1/2

⌘⌘
, (47)

Hzy|n+1
i+1/2, j+1/2 = F �1C

⇣
FHzy|ni+1/2, j+1/2

⌘
+
⇣
F �1iS k̂yeiky�y/2

⇣
F Ex|ni+1/2, j+1/2

⌘⌘
, (48)

Ex|n+1
i+1/2, j = F �1C

⇣
F Ex|ni+1/2, j

⌘
+
⇣
F �1iS k̂ye�iky�y/2

⇣
FHz|ni+1/2, j

⌘⌘
, (49)

Ey|n+1
i, j+1/2 = F �1C

⇣
F Ey|ni, j+1/2

⌘
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⇣
F �1iS k̂xe�ikx�x/2

⇣
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7

Spatial derivative in Fourier space:

(under assumption that source terms are constant over one time interval 
⇒ Maxwell’s equation can be integrated analytically one time step)

PSATD DISCRETIZATION

• PSATD DISCRETIZATION✔

3.3.2. Pseudo-Spectral Time-Domain Discretization
The Pseudo-Spectral Time-Domain (PSTD) method is based on solving Maxwell’s equa-

tions by advancing electromagnetic fields in Fourier space (k-space), while second-order time
Leapfrog di↵erentiation is retained in real space [17, 6, 10]. The field derivative with respect to
the spatial coordinate u (u = x or y) is evaluated in Fourier space

@ f (u)
@u

=
@

@u

Z 1

�1
F [ f (u)]eikuudku = F �1ikuF [ f (u)] (40)

where F and F �1 denote the forward and inverse Fourier transforms, respectively; k is the
wavevector of the length k = (k2

x + k2
y + k2

z )1/2. We note that the derivative evaluated in Fourier
space by Eq. (40) is the limit of finite-di↵erence at order p (Eq. (34)) when p! 1.

The extension of Eq. (40) to arbitrary finite order p is given by representing rp f in terms of
the Fourier integral, and further applying the convolution theorem, giving

@ f (u)
@u

= F �1i[ku]pF [ f (u)], (41)

⇥
ku
⇤

p =
2
�u

p/2X

l=1

cp
l sin
⇣
(2l � 1)

ku�u
2

⌘
, (42)

where [ku]p, with u = (x or y), corresponds to the p-order wavenumber components.
Following the notation used in the previous subsections and by applying spatial Fourier trans-

forms, the split-form of Maxwell equations in vacuum at order p is reformulated as follows,

Hzx|n+1/2
i+1/2, j+1/2 = Hzx|n�1/2

i+1/2, j+1/2 � �t
⇣
F �1i[kx]eikx�x/2F

⇣
Ey|ni+1/2, j+1/2

⌘⌘
, (43)

Hzy|n+1/2
i+1/2, j+1/2 = Hzy|n�1/2

i+1/2, j+1/2 + �t
⇣
F �1i[ky]eiky�y/2F

⇣
Ex|ni+1/2, j+1/2

⌘⌘
, (44)

Ex|n+1
i+1/2, j = Ex|ni+1/2, j + �t

⇣
F �1i[ky]e�iky�y/2F

⇣
Hz|n+1/2

i+1/2, j

⌘⌘
, (45)

Ey|n+1
i, j+1/2 = Ey|ni, j+1/2 � �t

⇣
F �1i[kx]e�ikx�x/2F

⇣
Hz|n+1/2

i, j+1/2

⌘⌘
. (46)

Here, the terms eikx�x/2 and eiky�y/2 correspond to the space shifts along x and y axes on the
staggered ”Yee” grid for Ey, while e�ikx�x/2 and e�iky�y/2 are the shifts for Hz [10].

Equations (43)-(46) can be used in place of the corresponding second-order Maxwell FDTD
equations in vacuum in the PML-2SS and PML-2SC algorithms, and are more advantageous, in
term of computational cost, than their finite-di↵erence counterpart for simulations that require
high-order accuracy [18].

3.3.3. Pseudo-Spectral Analytical Time-Domain Discretization
Maxwell’s equations in vacuum can be integrated analytically in Fourier space over one time

step, provided that the source terms are constant over the time interval [7, 13]. The resulting
algorithm is given by (omitting the source terms):

Hzx|n+1
i+1/2, j+1/2 = F �1C

⇣
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⌘
�
⇣
F �1iS k̂xeikx�y/2

⇣
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⌘⌘
, (47)

Hzy|n+1
i+1/2, j+1/2 = F �1C
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⌘
+
⇣
F �1iS k̂yeiky�y/2
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⌘⌘
, (48)

Ex|n+1
i+1/2, j = F �1C

⇣
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⌘
+
⇣
F �1iS k̂ye�iky�y/2

⇣
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⌘⌘
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⌘
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