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HISTORICAL REVIEW OF THE ABSORBING BOUNDARY CONDITIONS (ABCs)

ONE-WAY ABCs
DERIVED FROM DIFFERENTIAL EQUATIONS MATERIAL-BASED ABCs

(by factoring the wave equation and allowing (use a layer of absorber material added at the

solution that permits only outgoing waves) outer boundary)

» Engquist and Majda (based on Ist or 2nd order of the Taylor B MATCHED LAYER (ML)

series expansion Of\/(l —52) ) (impedance of material boundary was matched to the

> Trefethen-Halpern /47— 27 o, Pnl(s) free-space impedance only @ normal incidence
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HISTORICAL REVIEW OF THE ABSORBING BOUNDARY CONDITIONS (ABCs) _

Numerical electric/magnetic conductivities
(0,0%)~ field decay in the absorbance medium

“Matching condition”
20 T o

(1) Normal incidence
R(0) =0
(2) Oblique incidence
R(QO) _ cos(p)—1

cos(p)+1
/ May 2018 BLAST ® 2018 @ LBNL 4



HISTORICAL REVIEW OF THE ABSORBING BOUNDARY CONDITIONS (ABCs)

ONE-WAY ABCs
DERIVED FROM DIFFERENTIAL EQUATIONS

(by factoring the wave equation and allowing
solution that permits only outgoing waves)

MATERIAL-BASED ABCs

(use a layer of absorber material added at the
outer boundary)

» Engquist and Majda (based on |st or 2nd order of the Taylor
series expansion of\/(l —52) )

> Trefethen-Halpern \/(1 —52) a2

» Higdon operator Cn

P, (s)
s)

VN
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B MATCHED LAYER (ML)

(impedance of material boundary was matched to the
free-space impedance only @ normal incidence)

B PERFECTLY MATCHED LAYER (PML)

(Splitting fields into orthogonal components)
J-P. Berenger, J. Comput Phys., 114, 185-200 (1994)




HISTORICAL REVIEW OF THE ABSORBING BOUNDARY CONDITIONS (ABCs) _

® Field components split
o Perfectly matched conditions

ox _ Oig O _ %
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Vi : R(¢) =0 @ infinitesimal limit

while FDTD/PSTD introduce
residual reflections.
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HISTORICAL REVIEW OF THE ABSORBING BOUNDARY CONDITIONS (ABCs)

ONE-WAY ABCs
DERIVED FROM DIFFERENTIAL EQUATIONS

(by factoring the wave equation and allowing
solution that permits only outgoing waves)

MATERIAL-BASED ABCs

(use a layer of absorber material added at the
outer boundary)

» Engquist and Majda (based on |st or 2nd order of the Taylor
series expansion of\/(l —52) )

> Trefethen-Halpern \/(1 — 32) ~ Pn(s)

» Higdon operator Qn(s)
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B MATCHED LAYER (ML)

(impedance of material boundary was matched to the
free-space impedance only @ normal incidence)

B PERFECTLY MATCHED LAYER (PML)

(Splitting fields into orthogonal components)

J-P. Berenger, J. Comput Phys., 114, 185-200 (1994)
» Complex Coordinate Stretching PML (analytical
continuation into the complex plane)
> Uniaxial PML (un-split PML)
» Nearly PML
» Convolutional PML

» Asymmetric PML (APML)
J-L. Vay, J. Comput Phys., 183, 367-399 (2011)

( dasymmetry in absorption rate for
some setting of the extra coefficients)




HISTORICAL REVIEW OF THE ABSORBING BOUNDARY CONDITIONS (ABCs)
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Matching conditions )
mif ox/€0 = 0} /o an Oy/eo_ay/M():}\V/gO R( ) — 0

Cxp = Cp, Cy = Cy, Og = Oy, Oy
* @ infinitesimal limit

With special choice of coefficients:

& ZA
N(()*’)ce g infinitisimal limit
c§*) _ —a * ¢y ¢y — ¢ when At — 0
- J-L. Vay, J. Comput Phys., 183, 367-399 (2011)
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STANDARD 2N0-0RDER FDTD DISCRETIZATION (USING EXPONENTIAL TIME-STEPPING) B

- 1/2 At (E " )
liv1/2,j41/2 7 Ay i+1,j+1/2 1]+1/2

At
n—1/2 |
zy‘z+1/2]+1/2 | Ay(E ‘z+1/2]+1 L ‘z+1/21)

|

(%)
i

)|

xlit1/2,5 7 2liv1/2,j+1/2 ~ z+1/2] 1/2

‘n+1/2 P At
zx i+1/2,j+1/2

Hoyli1 1) €

n+1 —0' At
EX|i+1/2,j

H
n+1/2 —0 At[
EA
|

E ‘n+1 —O'XAt E ‘ ( ‘n+1/2 n+1/2
Y, j+1/2 Y, j+1/2 <li+1/2, ]+1/2 z 1/2,j+1/2

2D spatial arrangement of the Ean H | R AR G A A S
field components on “Yee” staggered 1 1/
In space and time grid

& i-“] /2,j &8 O &l @

0 O —0
Hz ijt1/2
Y B o B o B

/ May 2018 BLAST ® 2018 @ LBNL



STANDARD 2No-QRDER FDTD DISCRETIZATION B
TWO-STEP TIME-STAGGERED PML ("PML-25S")

zxli+1/2,j+1/2 it1/2,j+1/2 A\ i+1,j+1/2 Y, j+1/2)°
yli+1/2,j+1/2 N+1/2,j+1/2 | Ay Xli+1/2,j+1 Xli+1/2,7)°
o o n+1/2 . —0 At pypx nt1/2
Equivalently : Hol!l i = €T HL NS s
n+1/2 Lo Aty )2
(* ) @ sz‘i+1/2,j+1/2 — . sz|i+1/2,j+1/2’
xli+1/2,7 Xli+1/2,j Ay i+1/2,j+1/2 <i+1/2,j-1/2)°
plijerz = Eylijera T A Mo, zlic1/2,j+1/2)>
n+1 _ —o At o n+1
Ex‘i+1/2,j = e’ EX‘i+1/2,j’
n+1 _ —0 Al % 1n+1
EY‘i,j+1/2 = K Ey‘i,j+1/2‘

/ May 2018 BLAST ® 2018 @ LBNL



STANDARD 2No-QRDER FDTD DISCRETIZATION

7 May 2018

TWO-STEP TIME-CENTERED PML ("PML-2CS")

BLAST ® 2018 @ LBNL
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NOVEL TWO-STEP PML FORMULATION

At each time step, the field components E and H are updated in the following order:

(1) SOLVE MAXWELL'S EQUATIONS IN VACUUM OVER ONE TIME STEP

(2) MULTIPLY UPDATED FIELD COMPONENTS BY CORRESPONDING PML'S DAMPING
COEFFICIENTS ¢« 2

Novel two-step technique is very versatile and can be used
A as is with any Maxwell solver for step (1) and without re-
writing discretized equations for the PMLs.
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OISCRETIZATION - EXTENSION TO HIGH-ORDER FDTD, PSTD & PSATD

c\

7/ 16H-ORDER FDTD DISCRETIZATION
/3T DISCRETIZATION . .
PSATD DISCRETIZATION &5, Sl € o can be integrated andytically one e step) -
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DISPERSION RELATION ANALYSIS OF THE PML, PML-2S5 anp PML-25C

PATNYAY {YAYS

Dispersion relation equation as quadratic equation ¢ + be +c=0:
] —b + Vb? — 4c
w(k) = ——In )
At 2

Note only positive sign solution has been considered, while the negative sign (" parasitic”) solution has been disregard

PML. R A (T@)(Z,)CN b=~(a+a") - BB Xim ¢ = aa’
PML'ZSS a) = e‘“(*)m ,8(*) = c b = —(a+a)—-BB Yim, ¢ = aa’
PML-2CS: o® =", g9 =cib = —(a+a")(1 + BB xin/2), ¢ = aa’

Z}P/2 Zf;/zl 5{? P —zkAx(k+m—1) . e—lkAx(k—m) . elkAx(k—m) + ezkAx(k+m—1)}
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DISPERSION RELATION ANALYSIS OF THE PML, PML-255 aND PML-25C (cAr = 0.4Az)  pu

oc=0" =0.64 20 0RDRR L 0=0" = D.70
3 = 1.0 3 6.0
| 0.8 H.81
T2 o8 o8
| § §O.6- §5.6-
<] : <] <]
i //\,€j AOA‘ — PM £5.4‘ ‘
x 1 O 7 . 7
09l T ML-2SS -
- - - PML-25C
0 ' ' 0.0 ' ' ' 5.0 '
0 1 2 3 0 1 2 3 0 1 2 3
k.Ax k.Ax k.Ax

J Re[w(k)lpmL-2sc = CONST when ¢ /
J Re[w(k)]pmL-2ss # CONST when ¢ /* (by construction)

J Im[w(k)lpmL/PML-2ss/PML-2s¢c / when o / ~ O Re[w(k)] ~ speed of waves
Im[w(k)] ~ damping of waves
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SIMULATION PARAMETERS B

Schematic 2D representation of the TE Harris function (as temporal profile)
plane-wave striking right-hand APML

1 27tc 4rc 6rrc : c
ht) = {5(10 — 15 cos(F<) + 6 cos(FE) — COS(T’)), if 0<< <1

0, otherwise.
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COMPARISON OF THE REFLECTION COEFFICIENT @ NORMALLY INCIDENT PLANEWAVE |

Numerical & analytical results confirms predictions made by numerical dispersion analysis:

J Romi-2sc ~ Rpy @ all wavelength
J Rov -2sc differs fromR,,, thigher R @ shortwavelength «lower R@long wavelength)

S 101 v PML
9 6 PML-2SS
——
_ [] -
Y102 PML-25C
G
° CFL: dt=0.4dx/c
=
o107
O
b
8 10—4 —— theory (“p"”-source model ) *
W), AAA numerical calculation using PSTD?2

10! 107
Normalized wavelength, \/dx
*H. Vincenti, J.L. Vay , J. Comput Phys. Communications 200, 147-167, (2016)
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PML, PML-2SS, PML-2SC: PSTDP (p=2,8,32,64) VS. THEORY B
@ NORMALLY INCIDENT PLANE-WAVE

CFL: dt=0.4dx/c

NpmL=20
PML-2SS _ PML-2SC
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107

R R U R (e 1
Normalized wavelength, \/dx Normalized wavelength, \/dx Normalized wavelength, \/dx

—— theory (“p”-source model )

~A . numerical calculation using PSTDP
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PML, PML-2SS, PML-2SC: PSTDP (p=2,8,32,64) VS. THEORY
@ OBLIQUE INCIDENT PLANE-WAVE @ A /dz = 4
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AN ~ humerical calculation using PSTDr
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PML-25C: PSTDS PSTDeé4ys (Ns=2,8,16,32) AND PSATD>=

Ns is the order of sub-cycling in time (Ns = m: At/m)
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TEST OF THE NEW TWO-STEP FORMULATION IN LASER PLASMA EM-PIC SIMULATION

Simulation of 2D laser-plasma mirror interaction @ ultra-high intensity
performed with WARP+PXR and the new PML-2SC formulation
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30 40 50
X/ A

60

Antenna radiates the laser field = second
"undesired field absorbed by left PML
boundary w/o spurious reflection;

Laser field reflects from plasma mirror m
Harmonic generation in the reflected field

Reflected field approached right PML
boundary m well absorbed

T is the laser period

21



SUMMARY

® Novel “two-step” formulation has been introduced (starting from the standard FD

applying to arbitrary-order PSTD and PSATD solvers):

v Time-staggered "“PML-25S"
v Time centered "“"PML-2CS"

D then

@® Numerical dispersion analysis: PML-2SC's velocity and damping rates ~ standard (Berenger's) PML

@ °'mulation & analytical analysis: absorption rate of the PML-25C’s is preservec

solver; Including at the limit of o order; validating its applicability with PSATD

at any order of the
Maxwell's solvers

@® New PML formulation has been successfully implemented in a PIC code & applied to

challenging modeling of plasma mirror

RESTRICTIONS AND FUTURE STUDIES

Study was restricted to the extension of the spli€ formulation of the PM

_to PSA

studies will examine the applicability to unspilt formulation (e.g., Uniaxial PV

/ May 2018 BLAST ® 2018 @ LBNL
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D. Further




[hank you for your attention!
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PSATD DISCRETIZATION

7 May 2018

/PSATD DISCRETIZATION

+1 _ -1 Ao h ik Ay/2

HZX‘?+1/2,]°+1/2 = ¥ C(THZX‘?H/L#I/Z)_(? lSkxel e (ny‘?+1/2,j+1/2))’
+1 _ Ao h ik, Ay/2

HZY‘?+1/2,J'+1/2 = F C(77sz‘z+1/2]+1/2) (7: iS kye™™ (?Ex‘?+1/2,j+1/2))’

n+1
Ex‘i+1/2,j

n+1
EY‘i,j+1/2

C(TEX‘?H/Z j) T (f_ iS]%ye_ikyAy/z(sz‘?+1/2,j))’
FO(FE: 10) = (FiSkae S (FHL 1 0))
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Spatial derivative in Fourier space:

T f FLfale™ dk, = T~ ik F1f @)

ou
2 &5 k, A
LANE o ZZ; ¢, sin ((21 - 1)— u)

(under assumpﬂon that source terms are constant over one time interval
= Maxwell's equation can be integrated analytically one time step)

k = [K]/k.

C = cos(kcAr)
S = sin(kcAr)



