イロト 不得下 イヨト イヨト 二日

1/26

Massively parallel PSATD solver for PIC codes

An arbitrary scalable parallelization technique

Haithem Kallala

CEA Saclay

BLAST workshop 2018 May 7, 2018

Overview of the PIC algorithm

- Maxwell's equations solvers
- Finite Difference Time Domain
- Pseudo Spectral Analytical Time Domain

Pybrid Pseudo Spectral Analytical Time Domain

- General Idea
- Implementation
- Benchmarks

Overview of the PIC algorithm

- The PIC algorithm is an essential numerical tool to model kinetic effects in plasmas.
- Efficient PIC codes need to be highly scalable to take advantage of massively parallel architecture.

Overview of the PIC algorithm

Hybrid Pseudo Spectral Analytical Time Domain 00000

Maxwell's equations solvers

Maxwell's equations

•
$$\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

• $\vec{\nabla} \wedge \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{L}}{\partial t}$

Numerical resolution:

- Finite difference method.
- Pseudo Spectral method.

Overview of the PIC algorithm

Hybrid Pseudo Spectral Analytical Time Domain 00000

Finite Difference Time Domain

Maxwell's equations

•
$$\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

•
$$\vec{\nabla} \wedge \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

Finite Difference Time Domain • $\partial t => 2^{nd}$ order scheme • $\vec{\nabla} => 2^{nd}$ order scheme

< ≧ > < ≧ > ≧ < ⊘ < ⊘ 5/26

Finite Difference Time Domain

- Local computations.
- Allows parallel implementation

Finite Difference Time Domain

- Local computations.
- Allows parallel implementation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Finite Difference Time Domain

- Local computations.
- Allows parallel implementation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Finite Difference Time Domain

- Local computations.
- Allows parallel implementation

・ロ ・ ・ (部 ・ ・ 注 ・ く 注 ・) 注 ・ の へ (や 9 / 26

Finite Difference Time Domain

- Low MPI communications.
- Highly scalable.
- Induces important numerical dispersion.

Figure: Dirac pulse propagation with FDTD scheme

Pseudo Spectral Analytical Time Domain

• The PSATD algorithm is a dispersion-free **FFT-based** algorithm that solves Maxwell's equations in Fourier space.

$$\begin{split} i\vec{k}\wedge\vec{\hat{B}} &= \mu_0\vec{\hat{J}} + \frac{1}{c^2}\frac{\partial\vec{\hat{E}}}{\partial t} \\ i\vec{k}\wedge\hat{E} &= -\frac{\partial\vec{\hat{B}}}{\partial t} \end{split}$$

PSATD

- $\partial t =>$ Analytical integration
- $\vec{\nabla} => i\vec{k}$ Infinite order in space

Pseudo Spectral Analytical Time Domain

- Allows analytical integration over time under weak assumptions.
- No CFL condition.
- Dispersion free.

Figure: Dirac pulse propagation with PSATD scheme

- Voluminous MPI communications are required to perform distributed-memory FFTs.
- Global communications involving MPI_ALLTOALL calls.
- Extremely hard to scale. (Above few thousands cores)

- Voluminous MPI communications are required to perform distributed-memory FFTs.
- Global communications involving MPI_ALLTOALL calls.
- Extremely hard to scale. (Above few thousands cores)

Pseudo Spectral Analytical Time Domain

PSATD with standard domain decomposition ¹

- Induces a truncation error at subdomain boundaries ².
- This error is decreased when using a finite (but arbitrarily high) order stencil in space $j\vec{k} = \hat{\nabla}_p = \sum_{i=1}^{p/2} 2jc_i sin(2\pi ik/N)$
- Decreases quickly with the number of guardcells.
- Benchmarked over different physical regimes³.

- ²H. Vincenti and J.-L. Vay. Comput. Phys. Comm
- ³G. Blaclard, H. Vincenti, R. Lehe, and J. L. Vay Phys. Rev. E=96, 033305 →

¹J.-L. Vay, I. Haber, and B. B. Godfrey. J. Comput. Phys., 2013.

Pseudo Spectral Analytical Time Domain

Local Pseudo-Spectral Time domain

- Highly scalable (weak scaling). ⁴
- Nearly dispersion free with a high order stencil.
- Available in WARP+PXR

⁴H. Vincenti and J-L. Vay, Comp. Phys. Comm 2018 (♂) (≥) (≥) (≥) (≥)

Pseudo Spectral Analytical Time Domain

Local Pseudo-Spectral Time domain

- Memory footprint increases quickly due to data redundancy (up to x27 in 3D)
- Strong Scaling is hard to achieve with high number of guardcells.

■ **の**へで 17 / 26

Hybrid Pseudo Spectral Analytical Time Domain

- How to achieve strong scaling on hundreds of thousands of nodes ?
- Novel parallelization technique.

General Idea

- MPI subdomains are grouped into MPI clusters, called groups.
- Maxwell's equations are solved with PSATD scheme on each group using **distributed memory FFT**.

Hybrid Pseudo Spectral Analytical Time Domain $_{\odot \odot \odot \odot \odot}$

Hybrid Pseudo Spectral Analytical Time Domain

Load Balancing

• Using the hybrid technique requires to define a new grid appended to the groups topology. The two grids need to be linked by an optimized load balancing strategy.

Hybrid Pseudo Spectral Analytical Time Domain $_{\odot \odot \odot \odot \odot}$

イロト 不得下 イヨト イヨト

Hybrid Pseudo Spectral Analytical Time Domain

Pencil vs Slab FFT?

- Grouping MPI depends on the FFT library used.
- Pencil decomposition allows data distribution along two axes.
- Slab decomposition allows only data distribution along one axis.
- Data can always be distributed along X axis as for the local technique (one MPI task per group along X axis).

Pencil Decomposition

Slab Decomposition

20 / 26

Hybrid Pseudo Spectral Analytical Time Domain

Strong Scaling benchmark: Pencil technique

- From 32768 to 262144 cores on THETA (KNL architecture)
- 241 × 6145 × 12289 grid points
- Guard cells number : 8, 16, 32
- 32 MPI per group

■ ■ つへで 21/26

Hybrid Pseudo Spectral Analytical Time Domain $\circ \bullet \circ \circ \circ$

Hybrid Pseudo Spectral Analytical Time Domain

Strong Scaling benchmark: Pencil technique

- From 32768 to 262144 cores on THETA (KNL architecture)
- 241 × 6145 × 12289 grid points
- Guard cells number : 8, 16, 32
- 32 MPI per group

≣ ► ≣ ∽ ۹. ભ 22 / 26

Hybrid Pseudo Spectral Analytical Time Domain $\circ \circ \circ \circ \circ$

Hybrid Pseudo Spectral Analytical Time Domain

Strong Scaling benchmark: Slab technique

- 161×161×393217 grid points
- Guard cells number : 8, 16, 32
- 8 MPI per group

< 目 ト 国 ・ の へ や 23 / 26

Hybrid Pseudo Spectral Analytical Time Domain $\circ o \circ \bullet \circ$

Hybrid Pseudo Spectral Analytical Time Domain

Strong Scaling benchmark: Slab technique

- 161×161×393217 grid points
- Guard cells number : 8, 16, 32
- 8 MPI per group

< ■ト ■ 少へで 24/26

Conclusion

- Benchmarks show that the hybrid technique performs better than the local technique especially with an increased number of guardcells.
- There is an optimum number of MPIs per group that depends on the number of grid points and guardcells (optimum between data redundancy and MPI_ALLTOALL overhead).
- The memory footprint and global performance gain is very important (x7 and x4 respectively) with the Pencil technique.

Any questions?