
Data management and
reproducible simulation runs

Blast Workshop

Data management and reproducible simulation runs

● Physicist, not a computer scientist
● Don’t really know what I’m doing ;)
● No Warp or other BLAST codes involved, can be

applied to Warp input files

22

 Neutrons excite isotopes which emit
characteristic gamma rays of
isotope-specific energies

 Associated Particle Imaging
combined with time-of-flight analysis
enables correlation of measured
gamma ray with nucleus location in
the soil

 Measured gamma rates reflect
carbon concentration

Utilize isotope-specific response to neutron flux to measure carbon
distribution in soil

3

We need to run many simulations

● Geant4
● MCNP
● Python scripts

We run these locally and on a cluster, producing (for us)
large output files. We often run the simulations again with
slight modifications, e.g. more particles, different number of
cores, etc.

44

Problem: how to create reproducible runs

Possible solution:
● One directory for each run, keep all inputs, perhaps even the

outputs
Issue:

● hard to keep track
● hard to compare
● space requirements

We already keep all our input files in git, so instead of saving all
inputs, just save the git hash we are using and make sure that the
file we are running is actually in git.

55

Started working on a script to run tasks

● Check if input file is in git otherwise don’t run
(currently only works for main input file)

● Create a single line in a logfile
○ hash for the run
○ name of input file
○ git commit hash of the input file
○ save each event as a JSON string

66

commits = subprocess.run(['git', 'rev-list', '--all'],
 cwd=dir,
 stdout=subprocess.PIPE,
 encoding='ascii').stdout[:-1].split('\n')
go through all commits newest will be first
for c in commits:
 blobs = subprocess.run(['git', 'ls-tree', '-r', c],
 cwd=dir,
 stdout=subprocess.PIPE,
 encoding='ascii').stdout.split('\n')
 for b in blobs:
 if not b:
 continue
 h = b.split()
 if not h[1].startswith('blob'):
 continue
 if h[2] == hash:
 return c{"hash":"72fbce0c7d2d779c7f40c9273cbbe8b446ce1ce8",

 “file”:"resistive-network.py",
 "file_commit":"94f2ef35b281a7bd5c0204ac93eb75eeadbe685d",
 "command_line":"python3 resistive-network.py"}

Logfile entry:

Since we now have a script that runs our programs...

● Make the input files jinja1 templates
○ make number of cores/particles or other parameters

accessible
important for our monte carlo simulations:

random number seed
○ replace before we run the script
○ save parameters as dictionary in logfile

● Make the command line also a jinja template
● Save some other metadata

○ runtime
○ start time
○ version of the script that runs the software

77

1http://jinja.pocoo.org/

Also make running on different platforms easier

● Automatically figure out what platform we are running
on and execute the script accordingly
e.g. on the cluster create a SLURM sbatch file (from a
jinja template) and submit job automatically

● Use config file to define repositories and regexp for
platforms, pre/post scripts to run on different platforms

● If running for example dask, create scheduler on cluster

88

This makes reproducing results easier

● Ability to rerun a certain script with the same input parameters
● Rerun and overwrite some parameters for parameter scans

99

Usage:
 reproduce run [options] [--] <command>
 reproduce dryrun [options] [--] <command>
 reproduce addrepo [options] <alias> <path>
 reproduce listrepos
 reproduce addplatform [options] <regex> <type>
 reproduce listplatforms
 reproduce list [<howmany>]
 reproduce show <hash>
 reproduce monitor <hash>

Options:
 -p <key:value> for several parameters use k1:v1,k2:v2 syntax
 --list-parameters list all parameters that need to be set
 --show shows the input file (same as 'show', but can be used for run/dryrun)
 --template <template> the name of the file that should be treated as a template inside the

command

[roots]
path = /home/arun/projects/roots/simulations/atap-roots-simulations/
log = simulations.log

[reproduce]
path = /home/arun/projects/roots/simulations/reproducible/
log = simulations.log

[platforms]
^n0[0-9]+\.[a-z]+[0-9]+$ = SLURM
default is desktop

Command line options

Config file

Issues

● Still reproducible issues: which version of python, which
compiler for geant4, which modules loaded on cluster,
…

● Better backend than just a text file?
○ python tinydb, but hard to merge DB between different

computers
○ git itself as a backend?

1010

Next steps

11

● Planning on making this open source
● Automatically add hash to output, e.g. monkey patch

matplotlib’s plot function to include the hash. This
makes it easy to rerun results if you just have the plot

11

Curious what other people are using.
Happy to talk more about this.

Thank you for your attention!

1212

