# Time-over-threshold (TOT) studies with the DPTS

**Barak Schmookler** 

### Task list for DPTS studies

#### Laboratory measurements

| Task                                                         | Assigned     | Timeframe  | Details                                                                                                                                                                                                        |
|--------------------------------------------------------------|--------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power consumption study                                      | Trieste/CERN | 24th April | Investigate the performance of the chip as a function of IBIAS. Look into the threshold, noise, FHR, ToT, and ToA. Also, investigate optimal working points for low IBIAS values. Only needed for VBB = -1.2 V |
| 2e15, 5e15 and 1e16 chips                                    | CERN         | ?          | Investigate if the chips work: do at lower temp (< 15°C) and higher IRESET (> 70 pA), commission controlled environment setup                                                                                  |
| Bent DPTS                                                    | Trieste      | ?          | With WP4 investigate bent DPTS chips                                                                                                                                                                           |
| Pixel-to-pixel variation in threshold and<br>leakage current | Trieste      | ?          | See variations in chip biases pixel-to-pixel when all pixels are tuned to the same threshold                                                                                                                   |
| Study ToT pixel-to-pixel variation                           | ?            | ?          | What is the reason for such a large ToT RMS and pixel-to-pixel variation? Correlate the difference with other parameters                                                                                       |
| Remeasure all plots in paper with<br>different chips         | ?            | ?          | Remeasure all threshold, FHR and ToT dependence as well as Fe55 spectra shown in the paper for different chips                                                                                                 |
| Pulsing capacitance measurement                              | ?            | ?          | Look at chip-to-chip and pixel-to-pixel variations                                                                                                                                                             |
| FHR and thermal noise study                                  | ?            | ?          | Investigate sources of FHR: thermal, telegraph. Hot pixels. Chip-to-chip study                                                                                                                                 |
| Dead pixels                                                  | ?            | ?          | Study pixels unresponsive to pulsing and external stimuli.                                                                                                                                                     |
| Power consumption                                            | ?            | ?          | Study the chip performance at different power consumption levels                                                                                                                                               |
| Characterise the CML                                         | ORNL         | ?          | Performance as a function of BBIAS current                                                                                                                                                                     |
| Regularly measure TID chips                                  | CERN         | Ongoing    | Look into annealing effects on the chips: threshold, noise, noise occ, PID/GID clusters                                                                                                                        |
| Test different splits                                        | ?            | ?          | Study the behaviour of different splits                                                                                                                                                                        |
| Injecting noise via vbb or pwell                             | ?            | ?          | Study the chip behaviour with different noise levels                                                                                                                                                           |
| Separating PWELL and SUB                                     | ?            | ?          | Study the chip behaviour with separate PWELL and SUB                                                                                                                                                           |
| Look at chip-to-chip variations                              | ?            | ?          | Study the chip-to-chip behaviour of currents, thresholds, noise and leakage current                                                                                                                            |
| DPTS timing back-to-back                                     | CERN         | ?          | Use Sr90 to investigate the timing of two DPTS chips back-to-back (on hold for now, needs supplement with a testbeam measurement)                                                                              |

## TOT vs. Injected Charge – the large observed pixel-to-pixel variation is not understood



## TOT vs. Injected Charge – the large observed pixel-to-pixel variation is not understood



## TOT vs. Injected Charge – the large observed pixel-to-pixel variation is not understood



#### What is a good way to characterize this variation?



measurements at a given injected charge (V<sub>H</sub>). The y error bar shown is the standard deviation of those 25 <sup>5/26/2023</sup> measurements. It is not the standard error of the mean.



#### Comparison of slope for all pixels



### Next steps

- 1. Think about what are the best 'figure of merits' to use to characterize the pixel-to-pixel variation.
- 2. Take data with a wider range of injected charge. So far, I only go up to  $V_{\rm H}$  = 300 mV.
- 3. Repeat the TOT vs. injected charge scans for other voltage and current settings. Need to figure out how to automate the process a bit.