

Nb₃Sn Cos-Theta Magnets: Program overview and 15 T dipole status

Alexander Zlobin

US Magnet Development Program Fermi National Accelerator Laboratory

Outline

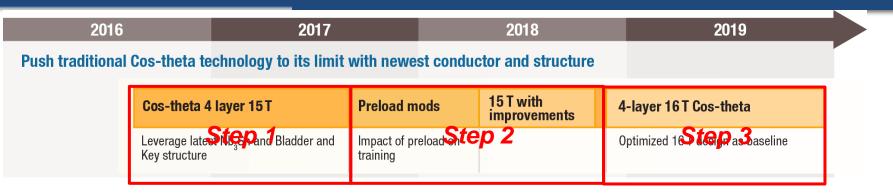
The U.S. Magnet Development Program Plan

S. A. Gourlay, S. O. Prestemon Lawrence Berkeley National Laboratory Berkeley, CA 94720

A. V. Zlobin, L. Cooley Fermi National Accelerator Laborator Batavia, IL 60510

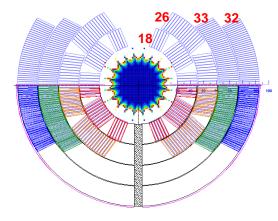
D. Larbalestier Florida State University and the National High Magnetic Field Laboratory Tallahassee, FL 32310

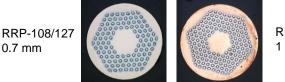
JUNE 2016



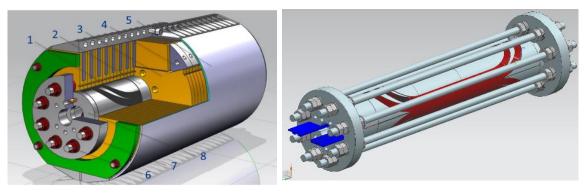
- Nb₃Sn Cos-theta dipole program plan and steps
- Step 1
 - \circ 15 T dipole demonstrator design and parameters
 - Design and procurement status
 - o MM
 - Coil fabrication
 - HT optimization and witness sample data
- Step 2
 - Coil parts L1-L2 and L3-L4
 - **o** Strand and Cable
- Step 3
 - Design study of 60-mm aperture 16-17 T dipole with stress management
 - Large-aperture Nb₃Sn dipoles
 - Design study of 120-mm aperture 13-15 T dipole with stress management
 - Schedule, milestones, budget, staff

Nb₃Sn cos-theta magnet R&D plan


- <u>Step 1</u>: 15 T dipole demonstrator design.
 - explore the target field and force range
 - serve as a technical and cost basis for comparison with new concepts
 - opportunity for program integration, particularly in the area of support structure design, and for exploration of various support structures.
 - most cost effective way to get into a field range that would exceed the LBNL D20 dipole built almost 20 years ago.
- <u>Step 2</u>: A successful series of magnets will provide a platform for performance improvement by integrating the outcomes of the Technology Development program.
- Step 3: 16 cos-theta design to explore the limit of Nb_3Sn in this geometry.


MDP 15 T Dipole Demonstrator design

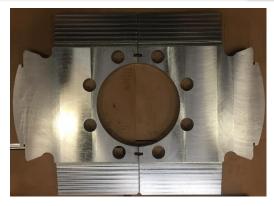
- Coil:
 - 60-mm aperture, 4-layer graded coil
 - W_{sc} = 68 kg/m/aperture


- Mechanical structure:
 - Thin StSt coil-yoke spacer
 - Vertically split iron laminations
 - Aluminum I-clamps
 - 12-mm thick StSt skin
 - Thick end plates and StSt rods
 - Cold mass OD<610 mm

- Cable:
 - L1-L2: 28 strands, 1 mm RRP150/169
 - L3-L4: 40 strands, 0.7 mm RRP108/127
 - 0.025 mm x 11 mm SS core
 - Insulation: E-glass tape

RRP-150/169 1 mm

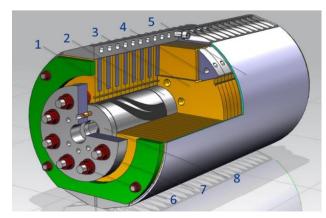
• Magnet SSL estimated based on the cable test data: $B_{ap}=15.3 \text{ T}$ at 4.5 K and $B_{ap}=16.7 \text{ T}$ at 1.9 K.


Magnet Parameters

Parameter	D20 (LBNL)	HD2 (LBNL)	FRESCA2 (CERN)	HFDD (MDP)	
Test year	1997	2008	2017	2018 (plan)	18.0 • 4.2 K
Max bore field [T]	13.35 (14.7*)	15.4	16.5 (18*)	15.2 (16.5*)	17.5 - 10% margin
Design field B _{des} [T]	13.35	15.4	13	15	17.0
Design margin B _{max} /B _{des}	1.0 (1.1*)	1.0	1.26 (1.4*)	1.04 (1.13*)	E 16.5
Tested margin B _{max} [T]	12.8 (13.5*)	13.8	~13	TBD	L 16.5 16.0 16.0
St. energy at B _{des} [MJ/m]	0.82	0.84	4.6	1.7	₿ 16.0
F _x /quad at B _{des} [MN/m]	4.8	5.6	7.7	7.4	15.5
F _y /quad at B _{des} [MN/m]	-2.4	-2.6	-4.1	-4.5	15.0 2500 2750 3000 3250 3500 3750 4000
Coil aperture [mm]	50	45	100	60	Jc(12T, 4.2K) (A/mm²)

Mechanical Stricture

Iron Laminations



End Plates

StSt Skin

All structural components are available

AL I-Clamps

Fillers

Axial Rods

Coil Components

Cable (FNAL)

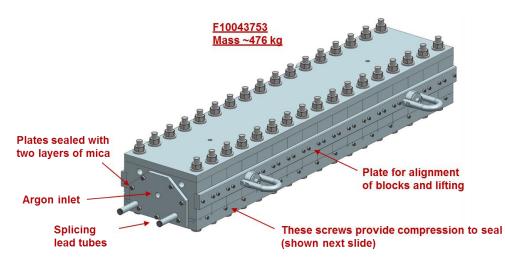
420 m of 28strand cable (4UL)
350 m of 40-

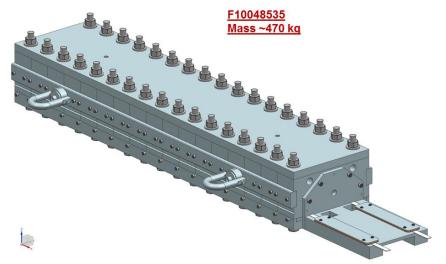
strand cable

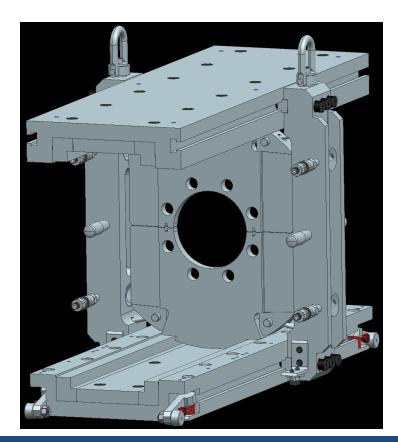
(3UL)

L3/4 parts (FNAL)

L1/2 parts (CERN)

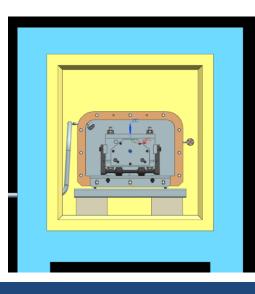

Ti and Cop Wedges

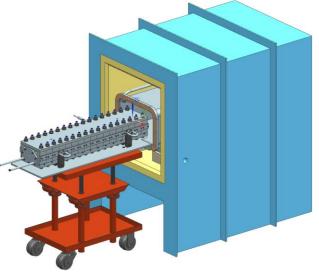

Ti poles and spacers, SS saddles



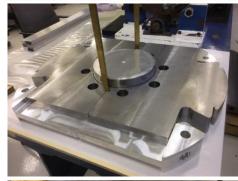
Tooling

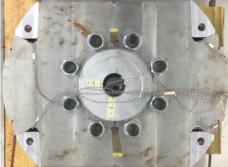
- Reaction/impregnation
- Yoking

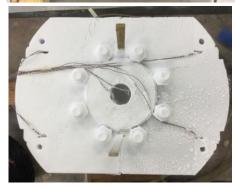

Infrastructure



- Winding table and tensioner
- Curing press
- Reaction oven and retort







Mechanical Models

Office of

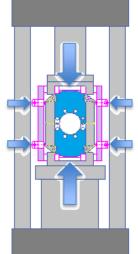
Science

S. DEPARTMENT OF

ΞN

Models:

- 5 cm long
- 1 m long

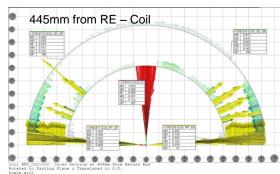

MM components:

- iron laminations
- Al I-clamps
- coil-yoke shim
- instrumented "dummy" Al coils (short and full-size)

Goals:

- To test all main components of the mechanical structure and tooling
- Develop a coil assembly plan and pre-stress targets
- Check instrumentation
- FEA validation





L3/L4 coil fabrication

Coil #1

- Coil winding-curingreaction-impregnation is complete
 - 8 witness samples tested
- Coil size was measured
 - damaged due to

Coil winding-curing is

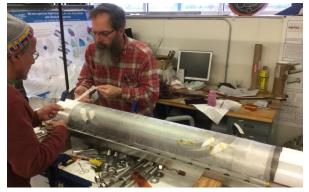
Short in the transition

cable has been found

Strand damage was

found in transition area

Coil #2


complete

and repaired

Coil #3

- Coil wounding-curingreaction is complete
 - 7 witness samples tested
- Preparation to impregnation is in progress

Coil #4

- To be fabricated to replace coil #1
 - Coil parts from coil #2
 - Cable is available

Coil #5 (spare coil)

Need coil parts and cable

L1/L2 coil fabrication

Coil #1

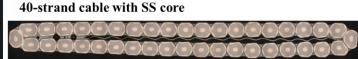
- Coil winding-curing is complete
- Preparation to reaction has started

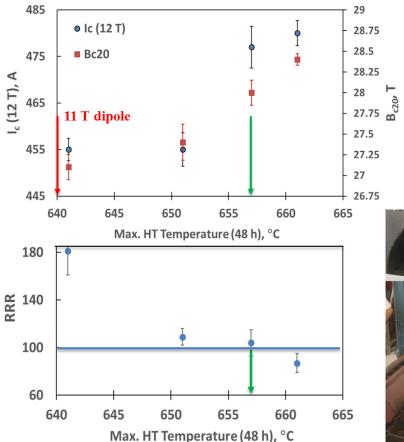
Coil #2

 Coil winding-curing is complete

Coil #3 (spare coil)

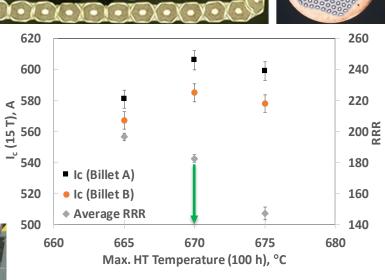
- Coil winding will start soon after relocation of winding table
 - cable and parts are available




0.7 mm RRP108/127

Coil Heat Treatment Optimization

1 mm RRP150/169



28-strand cable with SS core

L3-L4 witness samples:

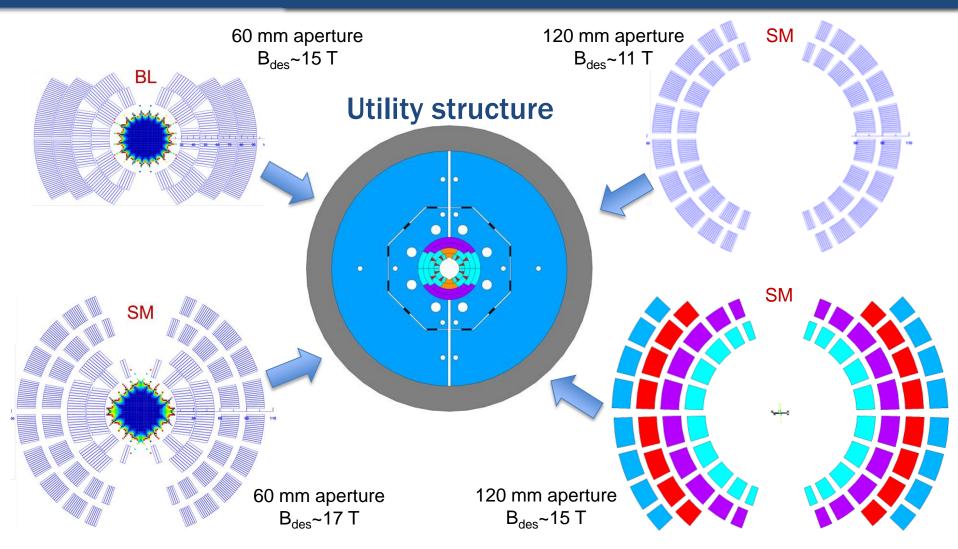
Location: tooling - 1R+3E, retort - 2R+6E Ic (12 T)_Extracted (Tooling) = 504 A Ic (12 T)_Extracted (Retort) = (498 ± 3) A RRR_Extracted (Tooling) = 108 ± 22 RRR_Extracted (Retort) = 74 ± 6

U.S. DEPARTMENT OF Office of Science

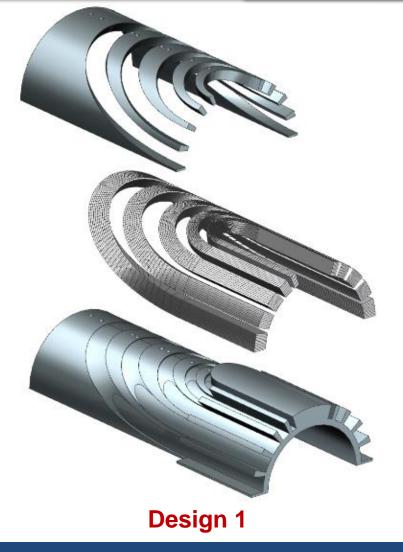
Comparison of L3/L4 coils #1 and #3

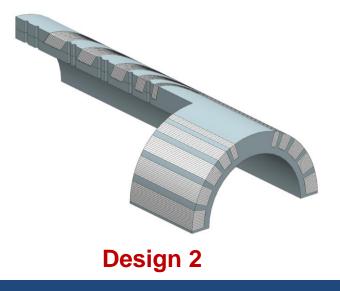
Ic @15T coil 002 Ic @ 15 T coil 004 ∢ ◄ I_{av}=265 A I_{av}=256 A Current, Current, **Sample Number Sample Number** RRR for coil 002 **RRR for Coil 004** Average=108 Tooling RRR Average=70 RRR 100 Retort Δ Average=97 Tooling Sample number Sample Number

Preparation to 2nd model (Step 2)

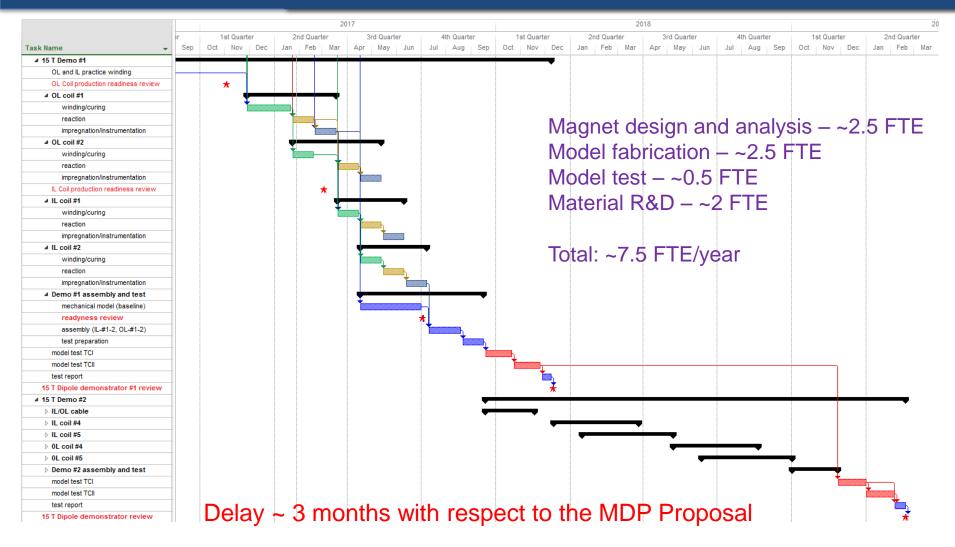


- Coil parts L1-L2 and L3-L4
 - L1-L2 2 sets available
 - o L3-L4 need 2 sets (~60k\$)
 - coil part design and technology to reduce the cost and time
- Cable
 - o 40 strand cable need 2-3 UL
 - o 28 strand cable 2 UL available +1-2 UL
- Strand
 - 0.7 mm available at FNAL (need to pay off)
 - 1 mm ~70 kg in procurement
 - Cu strands to be procured (~5 k\$)
- Cable insulation
 - S2 glass tape (6.5\$/m, ~1k\$/coil)
 - braiding ~13 \$/m


Cos-theta dipoles with stress management



Coil stress management technology


- Two possible end designs and technologies
 - $\circ~$ Design 1: winding with spacers
 - Design 2: winding into slots

15 T Dipole demonstrator schedule

Program reviews

Coil production readiness review September 20, 2017. Recommendations:

- 3 on the coil and tooling design
- 3 on magnet design, fabrication plan and status
- 5 on cable and coil parts Inventory, QC and travelers, resources, safety
- 4 on instrumentation

Most of those recommendations have been implemented.

Internal coil production review January 11, 2018

• 5 recommendations

All comments and recommendations were carefully studied and implemented.

New coil (opt. #2)

								2018								
					1st Quarter 2nd Quarter		r	3rd Quarter			4th Quarter					
Task Name 👻	Duration 👻	Start 👻	Finish 👻	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
✓ OL coil #1 HFD-CL2-002	285 days	Mon 11/28/16	Fri 12/29/17													
winding/curing	17 wks	Mon 11/28/16	Fri 3/24/17													
winding/curing	4 wks	Mon 3/27/17	Fri 4/21/17													
reaction	4 wks	Mon 5/22/17	Fri 6/16/17				۱ I									
impregnation/instrumentation	4 wks	Mon 12/4/17	Fri 12/29/17													
A OL coil #2 HFD-CL2-003	330 days	Mon 7/17/17	Fri 10/19/18								- 					
winding/curing	4 wks	Mon 7/17/17	Fri 8/11/17								-					
repair	3 wks	Mon 8/13/18	Fri 8/31/18												1	հ
reaction	3 wks	Mon 9/3/18	Fri 9/21/18													j
impregnation/instrumentation	4 wks	Mon 9/24/18	Fri 10/19/18													T 🚺
OL coil #3 HFD-CL2-004	160 days	Mon 6/26/17	Fri 2/2/18													I Î
winding/curing	4 wks	Mon 6/26/17	Fri 7/21/17			1										
reaction	4 wks	Mon 9/18/17	Fri 10/13/17	1]		_							
impregnation/instrumentation	4 wks	Mon 1/8/18	Fri 2/2/18					1		1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					
OL coil #4 HFD-CL2-005	70 days	Mon 3/5/18	Fri 6/8/18										•			
winding/curing	7 wks	Mon 3/5/18	Fri 4/20/18								<u>на на н</u>					
reaction	3 wks	Mon 4/23/18	Fri 5/11/18							ΤI			-	<u> </u>		
impregnation/instrumentation	4 wks	Mon 5/14/18	Fri 6/8/18													
IL Coil production readiness review	1 day	Mon 9/25/17	Mon 9/25/17	*								Ĩ				
▲ IL coil #1 HFD-CL1-001	105 days	Mon 11/20/17	Fri 4/13/18													
winding/curing	4 wks	Mon 11/20/17	Fri 12/15/17					1	-1							
reaction	3 wks	Mon 2/5/18	Fri 2/23/18						Г	+-1						
impregnation/instrumentation	4 wks	Mon 3/19/18	Fri 4/13/18								h					
IL coil #2 HFD-CL1-002	90 days	Mon 1/8/18	Fri 5/11/18					—		- T-						
winding/curing	4 wks	Mon 1/8/18	Fri 2/2/18					Y.								
reaction	3 wks	Mon 2/26/18	Fri 3/16/18						1 1							
impregnation/instrumentation	4 wks	Mon 4/16/18	Fri 5/11/18								1	J				
▲ IL coil #3 HFD-CL1-003	155 days	Mon 2/5/18	Fri 9/7/18						•		- - -					+
winding/curing	4 wks	Mon 2/5/18	Fri 3/2/18						1	լ						
reaction	3 wks	Mon 7/23/18	Fri 8/10/18											1		J
impregnation/instrumentation	4 wks	Mon 8/13/18	Fri 9/7/18												1	
Demo #1 assembly and test	285 days?	Mon 7/17/17	Fri 8/17/18	<u> </u>									-		_	
mechanical model (baseline)	33 wks	Mon 7/17/17	Fri 3/2/18		:			-		h			-1			
readyness review	1 day?	Thu 3/8/18	Thu 3/8/18							*						
assembly (IL-#1-2, OL-#1-2)	6 wks	Mon 6/11/18	Fri 7/20/18		lic	a, Jai	mes						*	<u> </u>		
test preparation	4 wks	Mon 7/23/18	Fri 8/17/18						laor	· Ste	eve	Just	in 🗌		h	
model test TCI	5 wks	Mon 8/20/18	Fri 9/21/18		AL	Sear			1901	, ວແ	. ,	5401			*	h
model test TCII	5 wks	Mon 9/24/18	Fri 10/26/18		· · · ,	2001	-									

Schedule and Milestones

[FY	17			FY18			FY19						
	Q1	Q2	03	Q4	Q1	02	Q3	Q4	Q1	02	03	Q4			
Nb ₃ Sn															
Cosine-Theta Baseline															
Milestones	Comparison study of alternative mechanical structures. Informs Driving Questions 3, 6, 9.	tion and test is complete.	Review and select the mechanical structure for the first 15 T 4-layer Cos-theta dipole.	4-layer Cosine-theta 15T	Retest of previous 4-layer Cosine-theta 15T with preload modifications			4-layer Cosine-theta 15T	Engineering design of 16 T dipole model suitable for HE-LHC or FCC		4-layer Cosine-theta 16 T				
Primary Focus/ Significance	Done	Q3	Structure selected	stress limits in a coil	Important for establishing warm prestress limits and impact on training. Informs Driving Questions 1, 2, 4, 5, 7.			Incorporate improvements and leasons learned from previous 4-layer dipole. Informs Driving Questions 1, 2, 4, 5, 7.	Structure analysis and selection for 50 mm appriture dipole model is complete.		Push to the field limit in optimized 16 T design. Start to incorporate cost reduction strategies. Informs Driving Questions 1, 2, 3, 4, 5, 6, 7, 9.	Evaluate feasibility and next steps. Consider possible alternate routes based on previous design studies and accumulated experience.			
								4-layer Cosine-theta	Retest of previous 4-layer Cosine-theta 15 T with preload modifications Important for establishing		4-layer Cosine-theta 15 T				
								stress limits in a coil design without resorting to stress ma Informs Driv	estress limits et on training. Informe Driving Questions 1, 2, 4, 5, 7.		and lessons learned from previous 4-layer dipole. Informs Driving Questions 1, 2, 4, 5 7.				
								1, 2, 4, 5, 7. Overall contribution to experience base, feedback for modeling and simulation tool development, diagnostics development.							

- Step 1 delay ~1 year wrt original MDP plan
- Step 2 delay ~9 months
- Step 3 delay could be ~3months

Conclusions

- Good progress during past year
- Fabrication of 15 T dipole demonstrator is in progress
 - **o** Design and procurement are complete
 - **o** Infrastructure prepared
 - $\circ~$ Coil fabrication is in progress
 - Mechanical structure is being tested
 - Magnet test is scheduled for Q4 of FY18
- Design studies of 16 T dipole with small aperture is complete
 - **o** ready to start SM coil technology development
- Design studies of large-aperture 15 T dipole is in progress
- Progress is limited by available resources both M&S funding and Labor (mainly techs)

