

US Magnet Development Program

Design of a shell-based Utility Structure

Mariusz Juchno US Magnet Development Program Lawrence Berkeley National Laboratory

Outline

- Goals of the utility structure design effort
- Shell based structure concept
- Present and future coil parameters
- Utility structure cross-section details
- 2D and 3D model results for 15T coil pre-load
- Towards 16 T coil
- Conclusions

Goals

Developing a shell-based magnet structure to be used for testing MDP coils

- Provide adequate pre-stress for 17T operation
 - 200MPa peak compressive stress
 - Prevent tensile stress in the pole area (pole-turn separation)
 - Rapid and reproducible magnet assembly/disassembly
 - Compatible with the existing 15 T 4-layer Cos-theta magnet design (FNAL)
- Investigation of design limits and sensitivities
 - **o** Close coil-structure design effort
 - $\circ~$ Impact of structure dimensions and features on pre-load capability
 - Coil features and fabrication technology impact on the ability to provide pre-load
 - **o** Effect of fabrication tolerances on mechanical performance

Bladder and Key pre-load concept in a Shell-based structure

Office of Science

- Bladder operation
 - Pressure acting on the yoke side compensated by reaction force in the shell (tension)
 - Pressure acting on the pad side compensated by the reaction force in the pole (compression)
- Room temperature pre-load
 - Keys replace bladders
 - Reaction forces drop slightly (~10-20%)
- Cool-down
 - Reaction forces increase due to aluminum shell shrinkage

Magnetic forces (coil pre-loaded)

- Reaction force in the shell remains almost the same as after cool-down
- Reaction force in the pole decreases due to magnetic force
- Magnetic forces (coil un-loaded)
 - Magnetic forces higher than pre-load
 - \circ $\,$ Coil can separate from the pole
 - \circ $\,$ Reaction force in the pole drops to zero
 - Reaction force in the shell increases due to magnetic forces

	B [T]	Fx _{quad} [MN/m]	Fy _{quad} [MN/m]	OD [mm]
СТ	15 15.6	6.8 7.4	-3.9 -4.5	188
CT-SM	16	9.5	4.1	208
CCT	17	11		194
CCT-CT	18	14		256
HTS/LTS	>16	?	?	< 280 ?

Structure with octagonal coil-pack

- Structure with octagonal coilpack
 - Improves yoke stress distribution and rigidity
 - Coil-pack horizontal and vertical size = 320 mm
 - Smaller coil axial rods in the coil-pack
 - Bigger coils axial rods in the yoke
 - Three load-keys

•

- Horizontal
 - Pre-load function
- o Diagonal
 - Stress distribution and rigidity
- Vertical
 - Alignment
- Possibility of closing yoke gap
- Bladders
 - Mid-plane (2)
 - Diagonal (8)
 - Yoke (4 or 6)
 - Vertical (2)

Structure and coil-pack dimensions

- Currently considered for calculation
 - $\circ~$ Coil pack width 320 mm
 - Shell OD 750 mm
 - o Shell TH 75 mm
- Current configuration allows pre-tensioning the shell to ~12 MN/m force per magnet quadrant
 - $\circ~$ Assuming that yoke remains open
 - Assuming max. 45 MPa bladder pressure
 - $\circ~$ Maximum forces defined but the shell OD
- Factors needed to be consider
 - Hybrid HTS/LTS coils (coil pack size)
 - Cryostat (Shell OD)
 - $\circ~$ Closed yoke gap (structure rigidity)

Maximum reaction forces in the shell

Maximum force at room temperature

Maximum force due to cool-down

• Maximum force defined by OD

• Thicker shell

- Less space for bladder
- Thinner shell can be inserted with fixed bladder pressure
- Higher force gained during cool-down

Maximum reaction force in the shell

15 T dipole demonstrator – 2D FEA

U.S. DEPARTMENT OF Office of Science

Development of the 3D model

- 3D ANSYS model developed
 - Initial simulations using 15 T Cos-Theta coils
 - Validation and optimization is ongoing
- Work on engineering design
 was initiated

Utility Structure Azimuthal coil stress (2D vs 3D)

U.S. DEPARTMENT OF Office of Science

Coil to pole/spacer contact

- Optimization of the pre-load level
 - Orthotropic coil properties
- Axial pre-load and tension in the coil-ends under investigation
 - Copper wedge to spacer interface
 - Layer 3-4 to pole contact

Utility Structure With different coil types

- Same structure was applied
- Shell OD 750mm
- Shell TH 75mm
- Same iron yoke
- Only pads were changed
- Pre-load adjusted only by load-key shims
- Possibility to close the yoke gap at cold (rigidity)
 - Closed collars ?

Mid-plane IR — Vertical-plane IR

Conclusions and Future Work

- Concept of the utility structure has been developed and analyzed
 - Reusable yoke-shell assembly with a coil-dedicated pads
 - Tentative dimensions established but further optimization is needed
 - 15 T Cos-theta coil and CCT coil analyzed with utility structure pre-load
 - Work on 16T coil pre-load analysis initiated (CT/SM, CCT/CT, LTS/HTS hybrids)
 - Structure rigidity with closed yokes needs further investigation (closed collars)
- 3D model of the utility structure developed
 - 15 T Cos-theta coil model implemented
 - Validation and optimization is ongoing
 - Axial pre-load system implemented
- Engineering design work initiated
 - CAD model of the full structure
 - Assembly procedure

Office of

Short mechanical mock-up

Thank You!

