

Nb3Sn Magnets: 16-17 T dipole design studies

Alexander Zlobin

US Magnet Development Program Fermi National Accelerator Laboratory

Outline

- Target parameters
- Parametric model
- 60-mm aperture 16 T dipole
- Large aperture dipoles
 - 120-mm 2-layer design
 - 120-mm 4-layer design
- Requirements to the Utility Structure

16 T dipole target parameters

	Geometrical	
	 Magnet total length 	<2 m
	 Magnet straight section 	>200 mm
	Free coil aperture	50 mm
	 Maximum magnet OD (reference number) 	620 mm (FNAL/1.9K), 660 mm (BNL/1.9K),
2.	Conductor	
	Strand diameter	0.7-1.2 mm
	Cu:nonCu ratio	1.0±0.1
	• Non Cu J _c (16T,4.2 K)	1300 A/mm ²
	• RRR	>60
	• Reference J _c (B,T) fit	see below
	 I_c degradation due to cabling 	5%
	 Maximum number of strands in cable 	42 (FNAL), 60 (LBNL)
3.	Operational	
	Reference temperature	1.9 K
	 Nominal operation field 	16 T
	 Margin on the load-line @ 1.9K 	10 % with respect to cable I_c
	 Geometrical field harmonics at R_{ref}=17 mm 	b _n <3 for n<10 (magnet straight section)
	 Target design field 	17 T
	 Maximum coil stress 	180 MPa (150 MPa during assembly)
	 Maximum coil-pole separation @ 17 T 	$<10 \ \mu m$ for cable width $<50\%$
ŀ.	Quench protection	
	 Maximum hot spot temperature 	350 K
	Total time delay	40 ms
	 Maximum voltage to ground @ quench 	1.0 kV
_	Ground insulation design voltage	>5 kV
5.	Reference $J_{C}(B,T)$ fit:	
	$B_{c2}(T) = B_{c20}(1 - t^{1.52}), J_c = \frac{c(t)}{p}b^{0.5}(t)$	$(1-b)^2$, $C(t) = C_0(1-t^{1.52})^{0.96}(1-t^2)^{0.96}$
	· D.	

where $t=T/T_{c0}$; $b=B_p/B_{c2}(t)$, B_p is the conductor peak field, $T_{c0} = 16$ K, $B_{c20} = 29.4$ T, $C_0 = 270$ TkA/mm².

- 6. Each magnet concept should provide
 - Description of magnet design including
 - Strand, cable and insulation (before and after reaction)
 - o Coil cross-section (number of layers, number of turns, conductor weight/m/aperture)
 - Coil end design concept
 - $\circ \quad \text{Magnet support structure including transverse and axial support}$
 - Quench protection system in the case of no energy extraction
 - Maximum magnet bore field B_{max} at conductor SSL for 1.9 K and 4.5 K
 - Dependence of B_{max} on conductor J_c(16T,4.2K)
 - Calculated geometrical field harmonics, coil magnetization and iron saturation effects in magnet straight section at $R_{ref}\!\!=\!\!17\,$ mm for B=1-16 T
 - Stress distribution in coil and structure at room and operation temperatures and at the nominal (16 T) and design (17 T) fields
 - Coil-pole interface (gap) at the nominal (16 T) and design (17 T) fields
 - Coil maximum temperature and coil-to-ground voltage during quench w/o energy extraction
 - Cost reduction opportunities

Target parameters has been formulated for the next MDP dipole model which will be fabricated and tested after the 15 T dipole demonstrator at FNAL and the CCT program at LBNL.

Timeline:

- Model fabrication in FY19+ per MDP plan.
- Engineering design and initial procurement FY18+
- Design studies and selection FY17+.

Science

15 T dipole demonstrator: possibilities and limitations

U.S. DEPARTMENT OF

ENERGY

Office of

Science

Parametric Model

- Radial shim for coil prestress
- Iron yoke is vertically split and closed

Model verification

4K B=15T

Cable parameters

Parameter	Inner Coil	Outer Coil
Number of strands	28	40
Mid-thickness, mm	1.870	1.319
Width, mm	15.	.10
Keystone angle, deg.	0.8	805
Cu/nonCu ratio	1.	13
J _c (15T, 4.2K), A/mm ²	15	00

• Both BL and SM coils use the same cables in the inner and outer coils.

60-mm aperture 16 T dipole with SM

U.S. DEPARTMENT OF

Office of Science

Iron yoke

- The model included a cylindrical iron yoke with the outer diameter of 600 mm and non-linear magnetic properties for the purpose of field calculation.
- The yoke design is to be optimized based on the structural analysis.

Office of Science

Magnet parameters

- SM design has 30% more turns, larger inductance and stored energy.
- The horizontal Lorentz force per the inner coil is a factor of 1.2 smaller and the vertical force is a factor of 2.4 smaller than in the BL design.
- The horizontal force on the outer SM coil is a factor of 3 higher than that for the outer BL coil, while the vertical force is practically the same.

Field quality

Table 2: Geometrical harmonics at $R_{ref}=17$ mm (10 ⁻⁴)				
Harmonic	BL	SM		
b ₃	0.0018	0.0007		
b ₅	0.0154	-0.0087		
b ₇	0.0523	0.1170		
b ₉	0.0612	0.2626		
b ₁₁	0.3433	-0.0873		

- Both designs provide the geometrical field quality better than 10⁻⁴ at R_{ref}=17 mm.
- There is a noticeable difference in the iron saturation and coil magnetization effects

Office of Science

Coil fields and margins

120 mm 2-layer dipole

l kA	B T	Scoil MPa	Pole Gap µm	Ssup MPa
12	11.0	170	16	556
14	12.5	203	50	611
16	14.0	256	90	688

120-mm aperture 15 T dipole

l kA	B T	Scoil MPa	Pole gap µm	Ssup MPa
10.1	15	190	24	575
10.8	16	200	50	637
11.6	17	210	90	699

Cos-theta dipole sequence

Horizontal force

Support structure has to keep iron yoke closed

- 60-mm 4-layer dipole design with stress management meets the design parameters of MDP Step 3
 - $\circ~$ to be reviewed and approve before engineering design
- 120-mm 2-layer dipole based on two outer layers with stress management can provide design field up to 11-12 T
 - technological model to study stress management in cos-theta coils
 - $\circ~$ outsert to test HTS coils
- 120-mm 4-layer dipole with stress management can provide design fields up to 15 T
 - $\circ~$ can be used as outsert for hybrid dipole
 - $\circ~$ study and optimization will continue

