

Current Status of the US Magnet Development Program

Soren Prestemon Director,US Magnet Development Program Lawrence Berkeley National Laboratory

•Guidance to the Technical Advisory Committee

- o Updated from last year
- High level program overview
 - o Review of the program foundation
 - o Management and technical oversight structure
 - **o Review of program goals and driving questions**
- Overview of MDP-aligned collaborations
- Goals of the collaboration meeting
- Guidance to speakers
- Guidance to session chairs/moderators

Charge questions for the Technical Advisory Committee

• The MDP priorities pursued over the last year are based on a balanced approach using available resources. Do the priorities reflect a reasonable approach to address the Program goals and Driving Questions given the current and projected funding levels and available resources? Comment on infrastructure improvements and their investment vs the R&D program.

• What elements or results of the current plan are most likely to have the highest near term impact? Which elements are critical for longer term program success?

• Comment on the progress on the HTS and Nb₃Sn efforts. Is the planning for hybrid magnet designs developing properly?

• Is the conductor roadmap adequate to address present needs and plan for future opportunities?

- Comment on progress in integrating the program between the labs
- Is the MDP approach to international collaborations at an appropriate level?

The US Magnet Development Program was founded by DOE-OHEP to advance superconducting magnet technology for future colliders

The U.S. Magnet Development Program Plan

S. A. Gourlay, S. O. Prestemon Lawrence Berkeley National Laboratory

Fermi National Accelerator Laboratory

National High Magnetic Field Laboratory

Florida State University and the

Berkeley, CA 94720 A. V. Zlobin, L. Cooley

Batavia, IL 60510

D. Larbalestier

JUNE 2016

Tallahassee, FL 32310

Strong support from the Physics Prioritization Panel (P5) and its subpanel on Accelerator R&D

A clear set of goals have been developed and serve to guide the program

Technology roadmaps have been developed for each area: LTS and HTS magnets, Technology, and Conductor R&D

US Magnet Development Program (MDP) Goals:

GOAL 1:

Explore the performance limits of Nb₃Sn accelerator magnets with a focus on minimizing the required operating margin and significantly reducing or eliminating training.

GOAL 2:

Develop and demonstrate an HTS accelerator magnet with a self-field of 5 T or greater compatible with operation in a hybrid LTS/HTS magnet for fields beyond 16 T.

GOAL 3:

Investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction.

GOAL 4:

Pursue Nb₃Sn and HTS conductor R&D with clear targets to increase performance and reduce the cost of accelerator magnets.

One full year is now behind us... DEVELOPMENT The management structure of the MDP is well defined and the program is fully functioning

U.S. MAGNET

PROGRAM

Technical Advisory Committee Andrew Lankford, UC Irvine - Chair Davide Tommasini, CERN Akira Yamamoto, KEK Joe Minervini, MIT Giorgio Apollinari, FNAL Mark Palmer, BNL

> **MDP** Management Group S. Prestemon, LBNL G. Velev, FNAL L. Cooley, FSU S. Gourlay, LBNL D. Larbalestier, FSU A. Zlobin, FNAL

Soren Prestemon, CEPC/SPPC Beijing, China, Nov. 7, 2017

Regular management and team meetings

• F C	nal management via "G6": Prestemon (Director), Velev (Deputy), Cooley, Gourlay, Larbalestier, Zlobin Neets weekly via videoconference	US-MDP Management The regular phone meetings of the US M within this category. Events in this category. December 2017	Meetings Paren Magnet Development Program management team. Each meeting wi gory are generally protected by a password shared among the mana	nt category 📰 ill be an event agement team.	
 Full MDP team meets regularly (~biweekly) with technical updates and discussion 		os Dec G6 meeting o4 Dec Update to the November 2017 28 Nov G6 meeting 14 Nov G6 meeting o7 Nov G6 meeting October 2017	US-MDP General Meetings The regular phone meetings of the US Magnet Development Prevent within this category. January 2018	Parent category	
	US-MDP General Mee chaired by Soren Prestemon (LBNL), Georg Wednesday, 6 December 2017 fr at Phone meeting Support: Ms. Sreela Sen, LBNL Email: SSen@Ibl.gov Telepho Wednesday, 6 December 2017	pe Velev (Fermilab) rom 13:00 to 16:00 (US/Pac	Manage 🕶		
	13:00 - 13:05 MDP news 5' 13:05 - 13:30 15 T dipole: status report 25' Speaker: Dr. Alexander Zlobin (Fermilab) Material: Slides		0		
	13:30 - 13:50 Interface Radius for a Hybrid Nb3S Speaker: Lucas Brouwer Material: Slides 13:50 - 14:00 Short presentations, discussions and states a)		
0Ľ	NERGY Office of Science		DE	S. MAGNET VELOPMENT 6 OGRAM	

Technical areas have leads who are responsible for coordination and planning

		1		
		Design Teams: 16 T Dipole design:		
Zlobin	No Sa	Leads: Zlobin and Sabbi <i>Utility Structure design:</i>	US Magnet Development Program (MDP) Goals:	
Arbelaez		Lead: Mariusz Juchno	GOAL 1:	
ning Shen			Explore the performance limits of Nb ₃ Sn accelerator magnets with a fi on minimizing the required operatin margin and significantly reducing or	
ong Wang	CILI /		eliminating training.	
Cooley	Conduc	tor R3D	Develop and demonstrate an HTS accelerator magnet with a self-field of 5T or greater compatible with	
LBNL lead	FNAL lead		operation in a hybrid LTS/HTS mag for fields beyond 16 T.	
Diego Arbelaez	Vadim Kashikhin		GOAL 3: Investigate fundamental aspects of	
Maxim Martchevsky	Stoyan Stoynev	Technology	investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction.	
Emmanuele Ravaioli	Thomas Strauss	development	GOAL 4: Pursue Nb ₃ Sn and HTS conductor R&D with clear targets to increase	
lan Pong	Steve Krave		performance and reduce the cost of accelerator magnets.	
	Arbelaez ning Shen ong Wang Cooley LBNL lead Diego Arbelaez Maxim Martchevsky Emmanuele Ravaioli	Arbelaez ning Shen ong Wang Cooley LBNL lead Diego Arbelaez Maxim Maxim Maxim Maxim Martchevsky Emmanuele Ravaioli	Zlobin Arbelaez ning Shen Org Wang Cooley LBNL lead FNAL lead Diego Arbelaez Vadim Kashikhin Maxim Martchevsky Emmanuele Ravaioli Thomas Strauss	

Building strong programatic interconnections

U.S. MAGNET DEVELOPMENT PROGRAM

Technical reviews have been held on specific elements of the program

The MDP team is progressing on the path for magnets outlined in the MDP Plan document

Area I: Nb₃Sn magnets

The MDP team is progressing on the path for magnets outlined in the MDP Plan document

Area II: HTS magnet technology

2015		2016	2016 201		17 2018		2019	
Bi-2212								
	Subscale magnet program		2 T, 50mm bore dipole		2T in 15T, 0.5 m long demo dipol		.5 m long demo dipole	
REBCO								
		Technology exploration & magnet design studies		1 T, 50 mm bo	re dipole		T in 15T, 0.5 m long lemo dipole	
				2 T, 20 K cond	uction cool	ed demonstrat	ion dipole	
		Ехр	lore other HEP	Stewardship app	lications: F	usion, Medical	, Light Sources, etc.	

Key science components of the MDP Plan are Technology Development and Conductor R&D

Area III: The science of magnets: identifying and addressing the sources of training and magnet performance limitations via advanced diagnostics, materials development, and modeling

ENERGY Office of Science

CPRD: Balanced effort of supplying sufficient conductor for magnet R&D and serving as catalyst for the next generation conductor

Area IV:

Continue the extremely successful paradigm of OHEP's Conductor Development Program

The **research and development** purpose of CPRD is to anticipate future magnet development needs including both LTS and HTS wires and cables. *Conductor development leads magnet development by 5 years or more* and CPRD must also envision conductor needs 10 to 20 years out, which could be conductors for magnets beyond the capability of Nb₃Sn, or for magnets that do not require liquid helium, since helium is likely to become increasingly more expensive.

Lance Cooley, Ph.D. Head, Conductor Procurement and R&D Program US HEP Magnet Development Program Applied Superconductivity Center, National High Magnetic Field Laboratory 2031 E. Paul Dirac Dr, Tallahassee, FL 32310-3711 USA Idcooley@asc.magnet.fsu.edu

Roadmap for Conductor Procurement, Research and Development October 6, 2017

Covering DOE FY 2018

Progress on high-field magnet concepts

• Block Cosine-theta magnet fabrication progressing - some delays due to curing and potting issues

- Canted Cosine-theta:
 - CCT4 (the second Nb₃Sn CCT 2-layer magnet) was tested, and thermally cycled
 - CCT5 is in design, incorporating feedback from CCT4
 - Subscale CCT currently being pursued for fast turn-around technology development;

DEVELOPMENT

PROGRAM

Progress on HTS magnet front

- Bi2212 has made dramatic strides in J_c over last 3 years –ready for magnets
 - Wire has been cabled and tested in racetrack configuration (RC5)
 - First Bi2212 CCT dipole has been wound; reaction and testing in next 2-3 months
 - Roadmap being developed to integrate Bi2212 CCT in a high-field hybrid magnet design

Bruker/OST

- REBCO development focused on CORC® cables and magnet technology development
 - 3-turn CO "dipole" was used to develop winding tooling, fabrication processes
 - 40-turn C1 dipole was then fabricated and tested
 - Anticipate >x3 improvement in both tape performance and magnet transfer function

Office of

Science

U.S. MAGNET DEVELOPMENT PROGRAM We are looking closely at options for future highfield magnet designs that build on current efforts

Design Team 16 T Dipole design: Leads: Zlobin and Sabbi

Nb₃Sn design specifications

- 1. Each magnet concept should provide
 - Description of magnet design including
 - Strand, cable and insulation (before and after reaction)
 - Coil cross-section (number of layers, number of turns, conductor weight/m/aperture)
 - Coil end design concept
 - Magnet support structure including transverse and axial support
 - Quench protection system in the case of no energy extraction
 - Maximum magnet bore field B_{max} at conductor SSL for 1.9 K and 4.5 K
 - Dependence of B_{max} on conductor $J_c(16T, 4.2K)$
 - Calculated geometrical field harmonics, coil magnetization and iron saturation effects in magnet straight section at R_{ref} =17 mm for B=1-16 T
 - Stress distribution in coil and structure at room and operation temperatures and at the nominal (16 T) and design (17 T) fields
 - Coil-pole interface (gap) at the nominal (16 T) and design (17 T) fields
 - Coil maximum temperature and coil-to-ground voltage during quench w/o energy extraction
 - Cost reduction opportunities

Design Team *Utility Structure design:* Lead: Mariusz Juchno

First look at Hybrid designs Caspi, Brouwer, et al

	10 (kA)	By-bore	Bmod (HTS)	Bmod (CCT)	Bmod (CT)
ANSYS	11	19.5	19.66	16.94	15.5
Opera2D	11	19.716	19.87	17.08	15.89
%diff		1.10	1.06	0.82	2.45
Poisson (Neumann					
boundary)	11	20.600	20.77	17.96	16.90
Poisson (parallel					
boundary)	11	19.370	19.58	16.80	15.82
Poisson (Average)		19.985	20.18	17.38	16.36
%diff		1.35	1.51	1.73	2.87

Progress on Technology front

- Development of active acoustic sensors on magnets opens avenue for new insights into magnet behavior
- Acoustic sensors used on CCT4 enable insight into magnet performance
- Thermo-mechanical properties of cable/insulation/epoxy
- Interface bonding, shear, peel strength of epoxy-metal interfaces currently being measured
- Modeling capabilities continue to be developed, particularly for advanced multiphysics coupling and leveraging of computing clusters with FEA

Progress on Conductor Procurement and R&D front

- Advances in Bi2212 powder processing + overpressure processing
- A Roadmap has been developed to clarify CPRD's vision of furthering conductor development, supporting ongoing magnet development needs, and coordinating critical R&D from other funding sources in support of MDP goals
- Nb₃Sn advances continue to be pushed
 - Advances in our understanding of the chemistry associated with Nb₃Sn heat treatment has lead to significant improvement in J_c for small-filament RRP conductors
 - Equal-channel angular extrusion (CDP order) being completed by OST
- Investigate potential for APC Nb₃Sn
 - Ohio State, FNAL LDRD, FSU
- REBCO development focused on leveraging SBIR and complementary programs; MDP provides measurements and conductor performance feedback to developers and vendors

DEVELOPMENT PROGRAM Issues and concerns and their mitigation: Magnets

- Need to push on magnet front:
 - Need to get Cosine-theta to test (without compromising quality!)
 - **o** Need to demonstrate improved training on CCT
 - **o** Need to maintain, and build upon, progress on HTS magnets
 - Keep/build momentum on Cos(t) magnet
 - But not let schedule pressure compromise success
 - Focus on...
 - fabricating good coils, and spares
 - thorough testing of the mechanical structure prior to final assembly
 - Develop and progress on a CCT program that...
 - addresses technical hurdles, e.g. training
 - provides maximum science/understanding
 - aligns with future program strategy (hybrid magnets)
 - Maintain fast progress on HTS magnet development:
 - Further focus efforts towards insert-ready magnets
 - Work closely with wire/tape and CORC cable manufacturers to develop accelerator-magnet optimized solutions

- We need to invest more in technology area, and collaborate more closely in that arena
 - O leverage capabilities and expertise, internal "tech transfer", build next generation of scientists
 - **o** Excellent area to develop University interest for collaboration

- Early investment in technology is beginning to pay off:
 - **o** New diagnostics are being incorporated throughout MDP, and beyond
 - Expect modeling developments to impact design work throughout MDP, and beyond

- Funding is flat for FY18
 - 0 lack of growth means our progress continues to lag from the original plan

- Some promising signs from DOE OHEP: we need to continue to provide evidence that
 - o their investments are effective, and
 - o enhanced funding would translate into faster progress

- Some investment in infrastructure is needed to allow rapid development of the technology
 - O Support for expanded Bi2212 furnace at ASC top near-term priority!
 - Support for test pit with larger diameter cryostat at FNAL => provide access to 1.8K testing of MDP high field magnets
 - Investment in new liquifier for faster, more efficient test throughput at LBNL (benefits MDP as well as other DOE-SC programs)
 - Two-PS based testing capabilities for hybrid magnets (IGBT-based extraction systems, active protection circuits, etc)
 - Develop detailed plans for infrastructure upgrades:
 - o clear justification for need
 - o well defined scope of work
 - o detailed cost and schedule
 - o work with lab management and DOE-OHEP to identify funding source(s)

International and industrial collaborations are underway in support of the MDP mission

Activity	MDP Relevance	Collaborating Institution	Contact(s)	MDP Contact
International				
Provide coil parts	15T Dipole	EuroCirCol/CERN	Tommasini, D., Shoerling, D.	Zlobin, A.
Mechanical analysis	15T Dipole	CERN/U. Patras		Zlobin, A.
History and Documentation of	MDP Nb3Sn Program	EuroCirCol	Schoerling, D.	Zlobin, A.
Nb3Sn Magnet R&D				
CCT Development	Nb3Sn CCT	PSI	Auchmann, B.	Brouwer, L.
CCT Instrumentation	Nb3Sn CCT	PSI	Auchmann, B., Montenero, G.	Marchevsky, M.
Acoustic Sensor Development	Technology Development	Danish Technological Institute	Zangenberg, N.	Marchevsky, M.
Acoustic Sensor Development	Technology Development	CERN	Willering, G.	Marchevsky, M.
Acoustic Sensor Development	Technology Development	CERN	Kirby, G.	Marchevsky, M.
Industry				
CPRD	Conductor R&D	B-OST/Hypertech		Cooley, L.
High-Cp Nb3Sn development	Nb3Sn Conductor R&D	B-OST	Parell, J.	Barzi, E.
CORC Development	Conductor R&D	ACT	Van der Laan, D.	Wang, X.
Development of High Performance Bi-2212 Precursor powder	Conductor R&D	nGimat LLC		Shen, T.
Other OHEP-Funded				
Magnetization studies	Conductor R&D	OSU	Sumption, M.	Wang, X.
Fiber Optic Quench Detection	HTS	PSU/Lupine Materials and Technology		Shen, T.

 Goals for the collaboration meeting are designed to keep the program focused on effectiveness

Identify near term milestones for each element of the program

•Identify hurdles/issues encountered over the last year and solutions to address them in the future (lessons-learned)

 Identify possible technical breakthroughs that would have the most significant impact on the program

•For technology developments, identify broader potential, i.e. beyond the core mission of MDP, where appropriate

•Identify infrastructure investments needed, and prioritize

Guidance to speakers is designed to support

•Magnet talks:

- o Where were we at the last collaboration meeting
- o What have we accomplished/learned over the last year
- **o** Where do we see ourselves in a year (and milestones to get there)
- What conductors are being used in the magnet, and what conductor is needed/wanted moving forward,

and....

- o What issues were encountered (e.g. technical hurdles, staffing issues, funding constraints, etc.)
- o What worries you the most
- o What technology elements/advances can best support your plans
- o What infrastructure is needed to deliver on the milestones

•Technology talks:

- o What is the driving consideration, i.e. put the technology development into context
- o What have we accomplished/learned over the last year
- **o** Where do we see ourselves in a year (and milestones to get there)
- O What is the potential of the work how far can it go, and what does it take to get there
- O Show broader potential, i.e. beyond the core mission of MDP, where appropriate
- o What infrastructure is needed to deliver on the milestones
- o Each talk should have a slide with milestones; what constitutes completion/success?

Conclusions

- We are following the MDP roadmap
- We have a fully functioning management structure
- We have regular management and technical staff meetings
 - Working to develop a strong team spirit
- We are balancing our efforts: limited budget while maintaining progress on multiple fronts
- A coherent conductor R&D roadmap has been fleshed out