

Transverse Momentum Distributions: Recent News from HERMES

Dr Bjoern Seitz, University of Glasgow

image taken from INT Program INT-17-3 Spatial and Momentum Tomography of Hadrons and Nuclei

Wigner Distributions

SIDIS: Partonic Cross Section and Kinematics

 $\sigma = F_{UU} + \frac{P_t F_{UL}^{\sin \phi}}{P_b} \sin 2\phi + \frac{P_b F_{LU}^{\sin \phi}}{P_b} \sin \phi \dots$

p_T

 $P_T = p_T + z k_T$

k_τ

 $\nu = (qP)/M$ $Q^2 = (k - k')^2$ y = (qP)/(kP) $x = Q^2/2(qP)$ $z = (qP_h)/(qP)$

Azimuthal moments in hadron production in SIDIS provide access to different structure functions and underlying transverse momentum dependent distribution and fragmentation functions.

beam polarization > target polarization

 $F_{XY}^h(x,z,P_T,Q^2) \propto \sum H^q \times f^q(x,k_T,..) \otimes D^{q \to h}(z,p_T,..) + Y(Q^2,P_T) + \mathcal{O}(M/Q)$

 $\int d^2 \vec{k}_T d^2 \vec{p}_T \delta^{(2)} (z \vec{k}_T + \vec{p}_T - \vec{P}_T)$

corrections for the region of large kT~Q

Azimuthal Moments in SIDIS

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions
- disfavoured Collins FF large and opposite in sign to favoure₫_one
- Non-zero transversity
- Non-zero Collins function

Collins Effect

Collins Effect - part II

- positive Collins SSA amplitude for positive kaons
- consistent with zero for negative kaons and (anti)protons
- vanishing sea-quark transversity and baryon Collins effect?

All things longitudinal - a new analysis of A_{LL}

P_h [GeV]

P_{h⊥} [GeV]

All things longitudinal - a new analysis of A_{LL}

Going vector - the $\boldsymbol{\omega}$

Lines are model predictions from S. Goloskov & P. Kroll Eur. Phys. J. A50 (2014) 146 Dashed lines without π -pole contribution Solid and dash-dotted lines show positive and negative $\pi\omega$ transition form factor

Summary

- HERMES conceived to solve the 'spin puzzle'
- Semi Inclusive Deep Inelastic Scattering with hadron identification key to success
- Versatile experiment design opened avenue to access new physics:
 - Transversity and Transverse Momentum distributions
 - Evidence for Boer-Mulders, Collins, Sivers, Pretzelosity, Worm-Gears ...
 - Hard exclusive reactions and Generalised
 Parton Distributions
- Be prepared to be surprised ...

Thank you very much for your attention

bjoern.seitz@glasgow.ac.uk

