

image taken from INT Program INT-17-3
Spatial and Momentum Tomography of Hadrons and Nuclei

Wigner Distributions

SIDIS: Partonic Cross Section and Kinematics

$$
\begin{array}{r}
\nu=(q P) / M \\
Q^{2}=\left(k-k^{\prime}\right)^{2} \\
y=(q P) /(k P) \\
x=Q^{2} / 2(q P) \\
z=\left(q P_{h}\right) /(q P)
\end{array}
$$

Azimuthal moments in hadron production in SIDIS provide access to different structure functions and underlying transverse momentum dependent distribution and fragmentation functions.

$$
\sigma=F_{U U}+P_{t} F_{U L}^{\sin \phi} \sin 2 \phi+P_{b} F_{L U}^{\sin \phi} \sin \phi \ldots
$$

Azimuthal Moments in SIDIS

quark polarization
$\overline{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=$

$$
\begin{aligned}
& \text { Higher Twist PDFs } \\
& +S_{\|} \lambda_{e} \mid \sqrt{1-\varepsilon \varepsilon \sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}} \\
& +\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right) F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right.}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right) \\
& +\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} \\
& +\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi F_{U T}^{\sin \phi_{S}}+\sqrt{\left.2 \varepsilon(1+\varepsilon) \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& +\left|S_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right. \\
& \left.\left.\quad+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\},
\end{aligned} \begin{aligned}
& \text { Experiment for a given target } \\
& \text { polarization measures all } \\
& \text { moments simultaneously }
\end{aligned}
$$

 azimuthal asymmetries in SIDIS

Precise measurement of scattered e^{-}
(transversely) polarised target

Precise measurement produced hadron

Collins Effect

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions
- disfavoured Collins FF large and opposite in sign to favoured one
- Non-zero transversity
- Non-zero Collins function

Collins Effect - part II

5nymum of Glasgow

- positive Collins SSA amplitude for positive kaons
- consistent with zero for negative kaons and (anti)protons
vanishing sea-quark transversity and baryon Collins effect?

Consistent with zero；but suppressed by two powers of $P_{h \perp}$ with respect to transversity and Collins

Pretzelosity

舟监药

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Boer-Mulders Effect

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Worm Gear

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Sivers effect

similar amplitudes for positive pions and protons
F u-quark dominance (and not a FF effect)?

All things longitudinal - a new analysis of $A_{L L}$

All things longitudinal - a new analysis of $A_{L L}$

Lines are model predictions from S. Goloskov \& P. Kroll Eur. Phys. J. A50 (2014) 146
Dashed lines without π-pole contribution
Solid and dash-dotted lines show positive and negative $\pi \omega$ transition form factor

Summary

- HERMES conceived to solve the 'spin puzzle'
- Semi Inclusive Deep Inelastic Scattering with hadron identification key to success
- Versatile experiment design opened avenue to access new physics:
- Transversity and Transverse Momentum distributions
- Evidence for Boer-Mulders, Collins, Sivers, Pretzelosity, Worm-Gears ..
- Hard exclusive reactions and Generalised Parton Distributions

- Be prepared to be surprised ...

