Muon Spectrometer Phase-I Upgrade for the ATLAS Experiment

The New Small Wheels Project

Benoit Lefebvre (McGill University) on behalf of the ATLAS Muon Collaboration

Conference on the Intersections of Particle and Nuclear Physics Palm Springs (USA) May 29 – June 3, 2018

The Large Hadron Collider (LHC) The road towards high luminosity

- A series of LHC upgrades are planned during Long Shutdown (LS) periods.
- Instantaneous luminosity expected to increase up to 5 to 7 times higher than nominal following LS3 in 2026.
- Expect to collect approximately 3000 fb⁻¹ of data by the end of LHC operations in 2037.

Benoit Lefebvre Figure: 10.23731/CYRM-2017-004

The ATLAS Muon Spectrometer

- Precise offline muon momentum measurement.
 - Using hits from precision muon chambers: Cathode Strip Chambers (CSC) and Monitored Drift Tubes (MDT).
- Data acquisition trigger on events involving muons.
 - Level-1 trigger (hardware) using hits from muon trigger chambers: Thin Gap Chambers (TGC) and Resistive Plate Chambers (RPC).
 - High Level Trigger (software) with hits from all muon detectors.

Challenges of High Luminosity Data Taking

- **Problem at high luminosity:** Level-1 trigger rate will exceed the readout rate bandwidth (~1MHz after LS3) of the ATLAS data acquisition system.
- More than **90%** of muon candidates identified by the end-cap Level-1 trigger algorithm are from "**fake muons**" that are, in fact, background hits.
 - Background hits come from particles produced in the material between the inner and middle stations.
 - Current muon Level-1 trigger algorithm uses information only from the middle station.
- **Solution:** Use inner station hits to identify fake muons. Inner station track segment must point to the IP and match the middle station measurements.
- Current inner station detectors cannot achieve an online fake muon identification.
 - Coarse granularity of inner station trigger detectors.
 - The hit efficiency of CSC and MDT precision detectors is rate-limited.

Benoit Lefebvre

High luminosity physics with muons

- High luminosity operation enhances the discovery potential of ATLAS:
 - Increased precision of Standard Model measurements
 - Increased sensitivity to rare physics processes
 - More detailed studies of the electroweak symmetry mechanism
- Muons are an important signature for a plethora of physics processes.
- The muon spectrometer overall performance must remain excellent at high luminosity to fulfill the ambitious ATLAS physics program.

New Small Wheel (NSW)

- New Small Wheel: Detector arrangement replacing part of the end-cap inner station.
- Wheel arrangement of 8 "large" and 8 "small" pie-slice detector sectors.

Specifications

- Online angular resolution better than 1 mrad.
- Stable overall performances up to a hit rate of 20 kHz/cm².
- Spatial resolution similar to that of the current inner station to maintain the current muon momentum resolution (10% @ $p_T = 1$ TeV/c)
- Time jitter better than 25 ns for bunch crossing identification.

New Small Wheel

- Sectors combine small-strip Thin Gap Chambers (sTGC) and Micromegas (MM)¹. Both technologies feature excellent high-rate track reconstruction and timing performances, required for the NSW.
- Both technologies use common readout electronics: the VMM
 - On-detector peak and time measurements of the detector signal.
 - Independent trigger and readout data paths.

small-strip Thin Gap Chamber (sTGC) Detector technology

- **small-strip Thin Gap Chambers**: Multiwire chambers operating with a mixture of n-Pentane/CO₂.
- Operation in the quasi-saturated mode.
 - Gas gain ~10⁵
 - Operating voltage = 2.9 kV
- **Strips:** Precise muon trajectory measurement in the bending plane.
 - Strip pitch = 3.2 mm
- Pads: Used for strip readout trigger and coarse measurement in the nonbending plane.
 - Pad area ~60 cm²
- Wires: Coarse muon trajectory measurement in the non bending plane.
 - Wire pitch = 1.8 mm
 - Wires ganged in groups of 20
 - Wire channels not used for trigger

Strip, pad and wire electrodes are read out on NSW sTGC modules

Strip-cluster centroid obtained from the center of mass of the peak strip signals during online operation.

small-strip Thin Gap Chamber

Online track reconstruction

- sTGC readout pads are staggered between layers and define areas called "logical pads" that trigger a band of strips.
- Muon position obtained from the centroid position of the strip charge clusters.
 - Centroid position obtained with a center-of-mass algorithm during online operation.
 - Strip clusters with more than 5 strips rejected because they originate from δ -rays.
- The centroid positions of each wedge are averaged. Candidate muon track segment obtained from average centroid of the wedges.

small-strip Thin Gap Chamber

Performance studies

CIPANP18

Figures: CERN-LHCC-2013-006, DOI:10.1016/j.nima.2016.01.087

Micromegas Detector technology

- Micromegas: micro-pattern gaseous detectors that operate in 2 phases: *drift* and *amplification*.
- A micro-mesh, transparent to electrons, separates drift and amplification gaps.
- Primary ionization drifts to the mesh by the action of a moderate electric field.
 - Drift gap thickness: 5 mm
 - Drift field = 600V/cm
- Charge is multiplied by the strong electric field in the amplification gap.
 - Gain gain $\sim 10^4$, Amplification field = 40kV/cm
 - Amplification gap thickness: 128 μm

Internal structure of a Micromegas

Micromegas Track reconstruction and trigger

- Online reconstruction: muon position obtained from the first strip with signal.
- Offline reconstruction: use charge cluster centroid position or µTPC mode.
- Stereo-strip arrangement for muon measurement in two coordinates.
- For trigger: global and local slopes obtained and compared using hits from all 8 Micromegas layers.

Micromegas Performance studies

µ-TPC mode: use strip hit timing to reconstruct a muon track. **Centroid mode**: strip-cluster centroid provides the muon position

90µm spatial resolution with perpendicular tracks.

Spatial resolution improvement with angle using the μ -TPC mode.

Timing of first strip hit All hits within ~3 bunch crossings

Detector production

- sTGC and Micromegas are trigger and precision detectors manufactured with stringent tolerances on the geometry and location of readout strips.
- The planarity of the assembly is crucial for a uniform detector gain.
 - Most assembly steps carried out on a flat granite table.
 - All boards and frames controlled for thickness.
- Excellent alignment of strip boards required for a precise muon track reconstruction.
 - sTGC strip boards aligned using brass inserts and precision alignment pins.
 - Micromegas strip boards aligned with precision dowel pins.
- Deviations from nominal of detector components known to within ~100 microns to meet the NSW specifications.

sTGC strip dimensional control with a CMM machine

sTGC strip misalignment measurement with microscope

sTGC production Overview

- Cathode board production in collaboration with industry.
- Quadruplet assembly: 5 production lines
 - Valparaiso/Pontifical, Chile (S1)
 - Shandong, China (S2)
 - o TRIUMF/Carleton/McGill, Canada (L2,S3)
 - Weizmann/TAU/Technion, Israel (L1,S3)
 - o PNPI, Russia (L3)
- Wedge assembly and final testing at CERN

sTGC Wedge Assembly

sTGC production Status

- Quadruplet prototype produced in all construction sites.
- Production is well underway in all construction sites.
 - Production of cathode boards and other parts in parallel.
 - More than 50% of cathode boards manufactured to this day.
 - End of cathode board production in Fall 2018.
- First prototype sTGC wedge complete.
 - Wedge production will start this Summer.
- QA/QC tests have been defined for assembled detectors:
 - x-ray scan
 - cosmic-ray testing

Cosmic-ray testing facility

Micromegas production Overview

- 2200 readout (RO) boards production in PCB factories.
- Quadruplet assembly in 5 production lines
 - INFN, Italy: SM1
 - BMBF, Germany: SM2
 - Paris-Saclay, France: LM1
 - JINR, Russia: LM2
 - Thessaloniki, Greece: LM2
- CERN is a central point for quality control and procurement.

Micromegas wedges

LM1/SM1: 5 PCB RO boards LM2/SM2: 3 PCB RO boards

Micromegas cross-section

Micromegas production Status

- ~50% of readout boards ready for quadruplet production.
 - Entered series production of drift and readout panels.
- Quadruplet production has started in construction sites.
 - Completion of first production module in all construction sites.

Gluing of mesh frame

Summary

- Incremental upgrades of the LHC are planned.
 - Five to seven fold increase in luminosity expected.
 - More physics opportunities for the LHC experiments.
- The Phase-I upgrade will improve the online muon identification capabilities of the ATLAS detector in anticipation of the increased LHC luminosity.
- The NSW combine the sTGC and Micromegas detector technologies.
- Detector construction is ongoing with stringent manufacturing specifications.
 - End of NSW installation scheduled by the end of LS2.

Back-up slides

Cross-section of a sTGC gas volume

Cross-section of a Micromegas quadruplet

Muon detectors high-rate performance

- Performance of muon end-cap detectors compromised by the high particle fluences expected at high luminosity.
- Current muon detector technologies reaching rate limitations:
 - Cathode Strip Chambers (CSC)
 - Monitored Drift Tubes (MDT)
- The expected performance degradation of end-cap detectors at high LHC luminosity will impact the trigger efficiency and precision of physics measurements involving muons.

ATLAS Muon Detectors

