UCDAVIS

Event Reconstruction Techniques for ANNIE Phase II

Jingbo Wang on behalf of the ANNIE collaboration Department of Physics, UC, Davis May 30, 2018, CIPANP, Palm Springs

Outline

- Introduction on ANNIE
- Phase II simulation
- Phase II event reconstruction
 - Two detector configurations (w/o 5 LAPPDs)
 - Vertex and track reconstruction
 - Energy reconstruction
 - Momentum transfer
- Summary

- **ANNIE:** Accelerator Neutrino Neutron Interaction Experiment
- 26-ton Gd-loaded water Cherenkov detector placed downstream of the Booster Neutrino Beam (BNB) at Fermilab
 - On-axis neutrino flux
 - Beam energy peaks around 700 MeV (relevant to atmospheric neutrinos)
 - 14x10³ v_µ of CC interactions per ton of water per year

ANNIE Goals

- **ANNIE primary physics goal:** Measure the **neutron multiplicity** from neutrinonucleus interactions in water as a function of momentum transfer
 - Help to understand the uncertainties on energy reconstruction in long baseline oscillation measurement
 - Neutron yield is a possible handle for neutrino/antineutrino separation
 - Neutron tagging provides signal/background separation for proton decay measurements and supernova neutrino observations.
- ANNIE technological goals:
 - First application of **Gd-doped water** in a beam experiment: large capture cross section for final state neutrons.
 - First application of Large-Area Picosecond Photodetectors (LAPPDs): precision timing to localize interaction vertices in the small fiducial volume

ANNIE Detector Overview

- **Ultra-pure water** in a 3m x 4m tank
- 2 layers of paddles in FACC and 2 layers in MRD.
- Neutron capture vessel (NCV) filled with 0.25% Gd-loaded liquid scintillator (EJ-335)
- 60 8 inch-PMTs act as a veto to the NCV.
- Data taking completed in September 2017.
- Background is sufficiently low to proceed to Phase II

- Gadolinium (0.2%) loaded water
- Full MRD: 11 layers and 310 channels
- 125 PMTs + 5 LAPPDs
- Calibration studies with AmBe source.
- It will be commissioned in the Fall 2018.
- Phase II will be capable of making neutron final state neutrino cross-section measurements

- 1 Charge Current neutrino interaction in the fiducial volume
- 1 Neutrino vertex and muon direction reconstructed using Cherenkov light detected by fast-timing LAPPDs
- 1 Muon momentum reconstructed by the MRD
- 2 Final state neutrons are getting thermalized in the water volume
- 3 Neutron capture on Gd emitting an 8 MeV gamma cascade
- 4 Gamma rays are detected by PMTs

LAPPDs in ANNIE

Next talk by V. Fischer

LAPPDs are MCP-based fast-timing photodetectors

- Flat, Large-area: 20 cm × 20 cm
- Picosecond timing: <100 ps for SPE
- Quantum efficiency: >20%
- Position resolution: mm
- Lower Cost per Unit Area
- Atomic Layer Deposited Micro-channel Plate (MCP)
- INCOM. Inc has commercialized the LAPPDs. The performance is quickly approaching the specifications needed by ANNIE

Phase II Simulation

- ANNIE Phase II simulation in WCSim: 128 PMTs + 128 LAPPDs
- Dataset of v_{μ} interactions provided by the GENIE generator
- Investigated event reconstruction capability using two different photodetector configurations:
 - PMT-only configuration including 128 8-inch traditional PMTs (about 20% coverage of the inner surface of the tank).
 - LAPPD+PMT Combined configuration including 128 8-inch traditional PMTs and additional 5 LAPPDs on the downstream wall of the tank.

Phase II Reconstruction Strategy

Reconstruction techniques

- 1) Vertex and track are reconstructed in water tank using maximum likelihood fit
- 2) Track length in MRD is reconstructed by fitting the hit position in all MRD layers
- **3)** Track length in water is reconstructed using Deep Learning Neural Network machine learning algorithm
- 4) Neutrino and muon energies are reconstructed using Boosted Decision Tree machine learning algorithm
- 5) Q^2 is calculated assuming CCQE interaction

Vertex and track reconstruction

- A single muon track can be specified by **6 kinematic variables:**
 - A vertex position (X, Y, Z)
 - A vertex time (T)
 - A track direction (θ, φ)
- Measurement from photodetectors
 - Hit position and time
 - Hit charge

Basic strategy:

- A timing-based likelihood (FOM_{time}) function is used to fit the vertex position and time
- A charge-based likelihood function (FOM_{cone}) is used to fit the cone-edge then the track direction
- 3) Six parameters are varied and the combined likelihood functions is used to fit the track

Vertex constraints in two directions

- Timing places a weak constraint longitudinal to the muon direction due to the ambiguity issue of T₀
- Scattered light outside the cone helps a little, but not sufficiently.
- Cherenkov cone-edge offers better constraint to T₀, which significantly improves the vertex resolution along the muon track
- In ANNIE, the strong transverse constraint is provided by 5 downstream LAPPDs, and the longitudinal constraint is strengthened by the PMTs
- Overall constraint transverse to the muon direction is much stronger

Vertex Displacement: Δr

Idealized reconstruction: take the true vertex and track direction as the seed for the track fit

- Only the muons that are produced within a fiducial volume and stop inside the MRD are selected
- LAPPDs show significant improvement on the vertex resolution
- 128 PMT-only (20% coverage) : 38 cm
- 5 LAPPDs + 128 PMTs : 12 cm

Track Angular Displacement: Δφ

Idealized reconstruction: take the true vertex and track direction as the seed for the track fit

- 128 PMT-only (20% coverage) : 10 degree track angle resolution
- 5 LAPPDs + 128 PMTs: 5 degree track angle resolution (a factor of two improvement!)

Angle between the true and the reconstructed muon tracks

Energy reconstruction

- Boosted Decision Trees (BDT) machine learning algorithm was used
- Select CCQE events with E_v < 2GeV
- Select events with muon stopped within the MRD
- The algorithm is trained with multiple input parameters

Input Variables:

- Track length in water calculated by Deep Learning Neural Network
- Track length in MRD reconstructed using 10 layer of scintillator paddles
- Angle difference between the reconstructed track direction and the beam direction
- The total number of hits in PMTs and LAPPDs
- The reconstructed vertex coordinates
- The distances of the reconstructed vertex from the detector walls (D_R, D_y)

E. Drakopoulou , arXiv:1710.05668v3

Energy Reconstruction

- Figure of merit: $\Delta E/E = 100 * (E_{true} E_{reco}) / E_{true}$
- The muon (neutrino) energy resolution achieved at the 68th percentile of all reconstructed events from the sample is 10% (14%).

E. Drakopoulou , arXiv:1710.05668v3

Marcus O'Flaherty (University of Sheffield)

Momentum transfer reconstruction

- Stopped muon events are selected for which the muon energy is measured as the sum of energy deposited in the water tank and the MRD.
- Assuming CCQE interaction, the reconstructed muon and neutrino energies, together with the muon angle are used to calculate the momentum transferred.

Slide 17

Momentum transfer reconstruction

- $\Delta Q^2 = Q^2_{reco} Q^2_{true}$, reconstructed by the ANNIE detector with 128 PMTs only and 5 LAPPDs + 128 PMTs
- The 1-sigma Q² resolution is extracted from the ΔQ^2 distribution for 4 bins in true Q^{2} .
- The addition of 5 LAPPDs improves the Q² resolution.

Summary

- ANNIE's physics goal is to measure the neutron multiplicity from neutrino interactions in water, as a function of momentum transfer
- ANNIE has finished Physics I background measurement and is moving to Phase II physics measurement (2018 fall).
- Simulation and Reconstruction tools for ANNIE Phase II are in place and show good performance.
 - Vertex & track reconstruction with PMT + LAPPD configuration
 - Machine learning tools are used for energy reconstruction
 - Momentum transfer reconstruction improves with 5 LAPPD
- Futhher development and improvement of the reconstruction techniques are ongoing

Thanks for your Attention! Questions?

Long Baseline Oscillation Physics

- In order to turn neutrino physics into a precision science, we need to understand the complex neutrino-nucleus interactions
 - Dominant source of uncertainties on energy reconstruction
 - Neutrino-nucleus interaction is hard to model
 - Need comprehensive measurements of neutron/proton multiplicity for a variety of targets/Ev
 - ANNIE focuses on the CCQE-like events and measure final state neutrons in water from 0.5 – 3 GeV
 - Better identification of pure CCQE interactions —
 - Possible handle for neutrino/antineutrino separation
 - Complementarity with proton multiplicity measurements in liquid argon

signal-background separation in a number of physics analyses!

Proton Decay

- Proton decay (PDK) remains one of the generic predications made by Grand Unification Theories (GUT)
- Main background from atmospheric neutrino interactions
- Backgound rejection using neutron tagging (n-Gd capture)
- Data is needed to implement the neutron yield in simulation of PDK backgrounds

Diffuse SuperNova Background (DSNB): continuous neutrinos flux from all past core-collapse supernovae =>difficult to detect

 Supernova neutrino is detected via the Inverse Beta Decay (IBD):

 $\overline{v_e} + p \to e^+ + n$

 Main background (E>20 MeV): from decay of sub-Cherenkov muons produced by atmospheric neutrinos:

$$\mu^{+} \rightarrow e^{+} + v_{e} + \overline{v_{\mu}}$$
$$\mu^{-} \rightarrow e^{-} + \overline{v_{e}} + \mu$$

 To discriminate signal and background, understanding of the atmospheric neutrino interactions is needed Beacom & Vagins, PRL, 93 (2004) 171101

Why does ANNIE need LAPPDs?

LAPPDs are key detectors for the ANNIE physics measurement

- Simulation shows that neutrons created in ANNIE can drift up to 2 meters.
 - In the direction transverse to beam, drift is symmetric
 - In the direction along the beam, drift is mostly forward with respect to the interaction point.
- In order to get a clean sample of neutrons, the analysis must be restricted to a small ~1 ton fiducial volume far from the walls of the tank to capture the neutrons
- To properly identify events in FV, vertex resolution of ~ 10 cm is needed
 - This is beyond the capability of traditional PMTs!
 - LAPPDs use fast-timing to localize the vertices, which is essential for ANNIE analysis

LAPPD commercialized by INCOM.

INCOM. http://www.incomusa.com/

A. Lyashenko, Incom LAPPD, Pico-Second Workshop, Kansas City Sept 15-18 2016

Vertex and track reconstruction

Conceptualize Cherenkov light as coming from a point source

Step1: "Simple vertex" fit

- Assume a hypothesized point-source location $(x_{hvp}, y_{hvp}, y_{hvp})$ $z_{hyp}, t_{hyp})$
- For each photon hit, calculate the point time residual:

 $\Delta t = t_{hit} - \left(\frac{L_p}{c/n}\right) -$

For all the hits, calculate the timing-based Figure-of-Merit (timing likelihood)

Adjust four parameters to maximize time FOM. FOM takes the maximum value when the width of the time residual distribution is minimized

 $(x_{hit}, y_{hit}, Z_{hit}, t_{hit})$

 $(x_{hyp}, y_{hyp}, z_{hyp}, t_{hyp})$

four parameter fit: (x, y, z, t)

Vertex and track reconstruction

Step2: "Extended vertex" fit six parameter fit: $(x, y, z, t, \theta, \varphi)$

 Starting from the "simple vertex" obtained from step1, assume a hypothesized track (x_{hyp}, y_{hyp}, z_{hyp}, t_{hyp}, θ_{hyp}, φ_{hyp})

$$\Delta t = t_{hit} + \frac{\frac{L_p}{c}}{\frac{c}{n}} - \begin{pmatrix} \frac{L_t}{c} \\ c \end{pmatrix} \longrightarrow \text{muon travel time}$$

Lt

 $(x_{hyp}, y_{hyp}, z_{hyp}, t_{hyp})$

 $\theta_{hyp}, \varphi_{hyp}$)

- For each hit, compare the measured cone edge to the simulated one.
- For all hits, calculated the overall FOM (FOM_{time} + FOM_{cone})
- Adjust six parameters to maximize the FOM

Track length reconstruction

- Muon energy is measured as the sum of energy deposit in water and MRD
- Track length in the water tank is calculated using a Deep Learning Neural Network (from Tensorflow package).
- Tracks in MRD are reconstructed in two 2D views and then matched into a 3D view
- MRD reconstruction is done in a separate framework. For the present studies, the track length is calculated as the distance between the true entry and stop points of the muon (neglect scattering)

