Precision constraints on nuclear and neutrino reactions via Big Bang nucleosynthesis

> LANL: D. Blaschke, V. Cirigliano, E. Grohs (N3AS/UCB), <u>M. Paris</u>, S. Shalgar UCSD: L. Johns, G. Fuller USD: C. Kishimoto

CIPANP Palm Springs 2018 May 29

LA-UR-18-24541

Outline

Motivation -- use BBN* to:

- Observations
- Applied: constrain light nuclear reactions at few percent level
- Fundamental: constrain neutrino & beyond standard model (BSM) physics

Objective: sub-percent accuracy on light element abundances

Overview

- BBN
- Reaction network of light nuclei
- Neutrino (semi-classical & quantum) kinetic equation energy transport

Results

*BBN = 'big bang' or 'primordial nucleosynthesis'

The 'Big Five' observations

Exciting situation developing ... because of the advent of ...

 comprehensive cosmic microwave background (CMB) observations (CMB-S4)

- N_{eff}: "effective number" of relativistic species; Y_p: ⁴He mass fraction (relative to proton); η (Ω_b): baryon-to-photon number fraction; Primordial deuterium abundance (D/H)_p; Σm_ν
- 10/30-meter class, adaptive optics, and orbiting observatories
 - e.g., precision determinations of deuterium abundance dark energy/ matter content, structure history etc.
- Laboratory neutrino mass/mixing measurements
 - mini/micro-BooNE, EXO, LBNE

This is setting up an over-determined situation where *new* Beyond Standard Model *neutrino physics* may manifest

Motivation (I): light nuclear reactions

Light nuclear reaction cross sections

- Ab initio many-body approaches to reaction theory
 - GFMC; NCSM; CHSH; RGM; ...
- Phenomenological approaches
 - Multichannel unitary R-matrix; non-linear constraint

$$T_{fi} - T_{fi}^{\dagger} = 2i \sum_{n} T_{fn}^{\dagger} \rho_n T_{ni}$$

Improve current theoretical/phenom. accuracies to \sim few %

Recent [Marcucci etal: PRL116,102501'16] $d(p, \gamma)^3$ He modifies S-factor by 10%

Nuclear reaction network

$$\frac{dY_{\alpha_1}}{dt} = \sum_{\alpha\alpha\beta} \Big[-n_b \langle v_{\beta\alpha}\sigma_{\beta\alpha} \rangle Y_{\alpha_1} Y_{\alpha_2} + n_b \langle v_{\beta\alpha}\sigma_{\alpha\beta} \rangle Y_{\beta_1} Y_{\beta_2} \Big]$$

• determine completeness/accuracy of NRN

Verification & validation of

light nuclear reaction data

Motivation (II): neutrinos, BSM

Neutrino properties from precision cosmology

- lepton number violation
- **D** $\sum m_{\nu}^{i}$ **NB:** dependence on neutrino spectra

CMB-S4 SB

- BSM: Develop ability to test array of scenarios
 - Requires sub-percent precision abundances
 - Sterile neutrinos; heavy particle decay
 - see Friday talk G. Fuller @ NMNM/TSEI: Parallel 8

BBN briefly (I)

LABORATORY

EST. 1943

29 May

CIPANP2018

BBN briefly (II)

Early FLRW universe

- Homogeneous & isotropic
- Hubble expansion drives out-ofequilibrium dynamics
- Cooling thermonuclear fusion reactor
 - nuclei bathed in neutrinos/photons
 - produces ⁴He (Y_P), D, ³He & ⁷Li
 - NB: out-of-equilibrium
- Status of observation
 - \square [now] \mapsto [planned]
 - $\Box Y_{\rm P} \sim 5\% \mapsto \sim 1\%$
 - $\square D/H \sim 2\% \mapsto \leq O(1\%)$
 - □ ⁷Li ~ O(50%) \mapsto O(few %)

Precision effects

 $\sim 2\%$

viz. BURST

BBN briefly (II)

- Homogeneous & isotropic
- Hubble expansion drives out-ofequilibrium dynamics
- Cooling thermonuclear fusion reactor
 - nuclei bathed in neutrinos/photons/
 - produces ⁴He (Y_P), D, ³He & ⁷Li
 - NB: out-of-equilibrium
- Status of observation
 - Inow] → [planned]
 - $\bullet Y_{\rm P} \sim 5\% \mapsto \sim 1\%$

NATIONAL LABORATORY

EST. 1943

- □ D/H ~ 2% → ≤ O(1%)
- ⁷Li ~ O(50%) → O(few %)

Precision effects

viz. BURST

Self-consistent neutrino transport

- "Self-consistent"
 - Previous approaches evolve neutrinos and 'post-process' BBN
 - $\Delta Y_{P} \sim 0.05\%$: very small; currently unmeasurable
 - Current approach solves neutrino energy transport and BBN concurrently
 - $\Delta Y_{P} \sim 1\%$: possibly observable with ELT's
- Neutrino energy transport in the early universe
 - Solve the neutrino quantum kinetic equations
 - Allow lepton number asymmetry
 - 18:10 [340] Neutrino Flavor Transformation and the Cosmic Lepton Asymmetry JOHNS, Luke [Friday NMNM/TSEI Parallel 8]
 - Describe e⁺/e⁻/photon/baryon plasma in terms of equilibrium distributions for all times/temperatures

IGPPS Los Alamos

Neutrino Boltzmann kinetic equation

- Effects beyond thermodynamic approach:
 - distortion of F-D equil. spectra
 - entropy generation and flow from plasma to neutrinos
 - upscattering of low-energy u
 - nonlinearties in feedback between
 ν evolution and BBN
- Deviation from relativistic species' energy

CIPANP2018

Coupled BBN/ ν kinetics

CIPANP2018 29 May

Boltzmann evolution results (I)

"Baseline" abundances

uncorrected

$$Y_P^{(N)} \equiv X_{^4\text{He}} = 0.2438,$$

$$(D/H)^{(N)} \equiv Y_D/Y_H = 2.627 \times 10^{-5},$$

 $({}^{3}\text{He}/\text{H})^{(\text{N})} = 1.049 \times 10^{-5},$

 $(^{7}\text{Li}/\text{H})^{(N)} = 4.277 \times 10^{-10}.$

Coulomb corrected $Y_P^{(Q)} = 0.2478,$ $(D/H)^{(Q)} = 2.650 \times 10^{-5},$ $(^{3}He/H)^{(Q)} = 1.052 \times 10^{-5},$ $(^{7}Li/H)^{(Q)} = 4.317 \times 10^{-10}$ *cf.* PARTHENOPE $Y_P \approx 0.2473$ CPC178,956'08

cf. Pitrou et al. $Y_P \approx 0.2470$ j.physrep.2018.04.005

Effect of transport mechanisms

Processes	Y_P	δY_P	$10^5 \times D/H$	$\delta({\rm D/H})$	$10^5 \times {}^3\text{He/H}$	$\delta(^{3}\text{He}/\text{H})$	$10^{10} \times {}^{7}\text{Li/H}$	$\delta(^{7}\text{Li/H})$
None	0.2438	0	2.627	0	1.049	0	4.277	0
All	0.2440	4.636×10^{-4}	2.636	3.686×10^{-3}	1.050	1.209×10^{-3}	4.260	-3.916×10^{-3}
10, 11	0.2439	2.124×10^{-4}	2.635	3.202×10^{-3}	1.050	1.048×10^{-3}	4.262	-3.650×10^{-3}
1, 2, 10, 11	0.2439	1.515×10^{-4}	2.635	3.155×10^{-3}	1.050	1.032×10^{-3}	4.261	-3.672×10^{-3}
1, 2, 3, 4, 5, 10, 11	0.2439	2.415×10^{-4}	2.635	3.148×10^{-3}	1.050	1.029×10^{-3}	4.262	-3.543×10^{-3}
6, 7, 8, 9	0.2440	$6.730 imes 10^{-4}$	2.629	1.002×10^{-3}	1.049	3.348×10^{-4}	4.276	-3.536×10^{-4}
1, 2, 6, 7, 8, 9	0.2440	$5.455 imes 10^{-4}$	2.629	9.034×10^{-4}	1.049	3.001×10^{-4}	4.275	-3.972×10^{-4}
1, 2, 3, 4, 5, 6, 7, 8, 9	0.2440	5.533×10^{-4}	2.629	8.981×10^{-4}	1.049	2.981×10^{-4}	4.276	-3.797×10^{-4}

1	$ u_i + \nu_i \leftrightarrow \nu_i + \nu_i $	6	$\nu_e + e^- \leftrightarrow e^- + \nu_e$
2	$\nu_i + \nu_j \leftrightarrow \nu_i + \nu_j$	7	$ u_{\mu(au)} + e^- \leftrightarrow e^- + u_{\mu(au)}$
3	$\nu_i + \bar{\nu}_i \leftrightarrow \nu_i + \bar{\nu}_i$	8	$\nu_e + e^+ \leftrightarrow e^+ + \nu_e$
4	$ u_i + ar{ u}_j \leftrightarrow u_i + ar{ u}_j$	9	$ u_{\mu(au)} + e^+ \leftrightarrow e^+ + u_{\mu(au)}$
5	$ u_i + ar{ u}_i \leftrightarrow u_j + ar{ u}_j$	10	$\nu_e + \bar{\nu}_e \leftrightarrow e^- + e^+$
		11	$ u_{\mu(\tau)} + ar{ u}_{\mu(\tau)} \leftrightarrow e^- + e^+ $

Boltzmann evolution results (II)

TABLE V. Changes in primordial abundances in BBN for Coulomb and radiative corrections. The first column gives the processes used for a given run. Rows correspond to various corrections as "CC" for Coulomb corrections; "0T" for zero-temperature radiative corrections; "Trans" for neutrino transport calculation with computational parameters as given in Table IV. The notation for the relative changes is the same as in Table IV. Row 4 is our (Q) baseline.

Processes	Y_P	δY_P	$10^5 \times D/H$	$\delta({ m D/H})$	$10^5 \times {}^3\text{He/H}$	$\delta(^{3}\text{He}/\text{H})$	$10^{10} \times {}^{7}\text{Li/H}$	$\delta(^{7}\text{Li/H})$
None	0.2438	0	2.627	0	1.049	0	4.277	0
CC	0.2474	1.463×10^{-2}	2.647	7.898×10^{-3}	1.052	2.737×10^{-3}	4.317	9.344×10^{-3}
0Т	0.2442	1.454×10^{-3}	2.629	7.816×10^{-4}	1.049	0.0	4.281	9.365×10^{-4}
СС, 0Т	0.2478	1.613×10^{-2}	2.650	8.719×10^{-3}	1.052	3.021×10^{-3}	4.321	1.030×10^{-2}
Trans	0.2440	4.636×10^{-4}	2.636	3.686×10^{-3}	1.050	1.209×10^{-3}	4.260	-3.916×10^{-3}
CC, 0T, Trans	0.2479	1.644×10^{-2}	2.659	1.236×10^{-2}	1.053	4.209×10^{-3}	4.304	6.231×10^{-3}

$$\delta Y_P = +1.64\%$$
$$\delta(D/H) = +1.24\%$$

"All": all antineutrinos/neutrinos on charged leptons and n & p

- Non-linear dependence on included processes
- Perhaps observable with next-generation instruments

Neutrino quantum kinetic equations (QKE)

PHYSICAL REVIEW D 89, 105004 (2014)

Vlasenko-Fuller-Cirigliano

$$\begin{split} id_t f(p,t) &= \left[\Omega(p) + \sqrt{2}G_F \left(L + \tilde{L} \right) - \frac{8\sqrt{2}G_F p}{3m_W^2} \left(E + \cos^2 \theta_W \tilde{E} \right), f(p,t) \right] + iC[p,f] \\ id_t \bar{f}(p,t) &= \left[-\Omega(p) + \sqrt{2}G_F \left(L + \tilde{L} \right) + \frac{8\sqrt{2}G_F p}{3m_W^2} \left(E + \cos^2 \theta_W \tilde{E} \right), \bar{f}(p,t) \right] + i\bar{C}[p,\bar{f}] \\ L_{\alpha\beta} &= 2\delta_{\alpha\beta} \int d_3q \left(g_\alpha(q) - \bar{g}_\alpha(q) \right) \qquad \qquad E_{\alpha\beta} = 2\delta_{\alpha\beta} \int d_3q E_\alpha \left(1 - \frac{m_\alpha^2}{4E_\alpha^2} \right) \left(g_\alpha(E_\alpha) + \bar{g}_\alpha(E_\alpha) \right) \\ \tilde{L} &= \int d_3q \left(f(q,t) - \bar{f}(q,t) \right) \qquad \qquad \tilde{E} = \int d_3q q \left(f(q,t) + \bar{f}(q,t) \right) \end{split}$$

$$\Omega(p) = \sqrt{p^2 + M^2} \simeq p + \frac{M^2}{2p} + \cdots$$
$$M^2 = U_{PMNS} \ M_d^2 \ U_{PMNS}^{\dagger} \qquad M_d^2 = diag(m_1^2, m_2^2, m_3^2)$$

□ Non-eq. FT:

AL LABORATORY

EST. 1943

- **Wigner transform** \mathcal{V} **2-pt function** $G_{\nu,IJ}^{\alpha\dot{\alpha}}(x,y) = \langle \mathbf{T}_P(\psi_I^{\alpha}(x)\psi_J^{\dagger\dot{\alpha}}(y)) \rangle$
- **Derivative/loop expansion (x,k); small:** $\frac{\partial_x, M, \Sigma}{E} = O(\epsilon) \quad \frac{\Pi_{\rho}, \Pi_F}{E} = O(\epsilon^2)$
- Assume homogeneity & isotropy
- Resulting terms: vacuum, lepton asymmteric (L) and symmetric (E) "coherent"/"self", collision
- □ Folklore: "coherent: collective; collision: incoherent" --- STAY TUNED.

Neutrino non-equilibrium results

Employing the time- and momentumdependent co-rotating frame transformation largely decouples the ultrahigh frequency neutrino vacuum oscillations.

$$\tilde{f}(p,t) = e^{-it\Omega(p,t)} f(p,t) e^{+it\Omega(p,t)}$$

AL LABORATORY

EST. 1943

- (Q)QKE, ν scatt+vacuum osc.
- (B)Boltzmann, full
- T ~ 0.5 MeV
- **flavor not equilibrated**

Conclusion/Outlook

- Include full standard model/quantum theory:
 - Non-equilibrium field theoretic neutrino quantum kinetics
 - Flavor oscillations: we've shown for the first time that in the self-consistent approach the neutrino flavors have not 'equilibrated' as BBN is starting
 - Test nuclear reactions & BSM scenarios that may affect BBN
- Time/momentum dependent co-rotating frame improves straightforward method by factor of 20 computing time
 - convergence properties undergoing testing
- Related work
 - testing the validity of the assumption of homogeneity and isotropy in the early universe
 - neutrino flavor oscillations can (do?) affect this

 S. Shalgar [Friday, NMNM / TSEI: Parallel 8 — Neutrinos and Symmetries (16:10-18:30)]

Follow-on material

CIPANP2018 29 May

Collaboration

University

- G. Fuller (UCSD), L. Johns (UCSD)
- C. Kishimoto (USD)

LANL

D. Blaschke, V. Cirigliano, E. Grohs, S. Shalgar, M. Paris

Selected recent publications:

- [1] Vincenzo Cirigliano, Mark W. Paris, and Shashank Shalgar. Effect of collisions on neutrino flavor inhomogeneity in a dense neutrino gas. *Physics Letters B*, 774:258 267, 2017.
- [2] Shashank Shalgar. Multi-angle calculation of the matter-neutrino resonance near an accretion disk. *Journal of Cosmology and Astroparticle Physics*, 2018(02):010, 2018.
- [3] E. Grohs, George M. Fuller, C. T. Kishimoto, and Mark W. Paris. Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis. *Phys. Rev.*, D95(6):063503, 2017.
- [4] E. Grohs and George M. Fuller. Insights into neutrino decoupling gleaned from considerations of the role of electron mass. *Nuclear Physics B*, 923:222 244, 2017.

IGPPS Los Alamos