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Outline 

¨  Motivation -- use BBN* to: 
¤  Observations 

¤  Applied: constrain light nuclear reactions at few percent level 
¤  Fundamental: constrain neutrino & beyond standard model (BSM) physics 

Objective: sub-percent accuracy on light element abundances 

¨  Overview 
¤  BBN 

¤  Reaction network of light nuclei 
¤  Neutrino (semi-classical & quantum) kinetic equation energy transport 

¨  Results 

CIPANP2018 29 May 

*BBN = ‘big bang’ or ‘primordial nucleosynthesis’ 



The ‘Big Five’ observations  

¨  comprehensive cosmic microwave background (CMB) 
observations (CMB-S4) 
¤  Neff : “effective number” of relativistic species;Yp : 4He mass fraction 

(relative to proton);η(Ωb): baryon-to-photon number fraction; 
Primordial deuterium abundance (D/H)p;Σmν 

¨  10/30-meter class, adaptive optics, and orbiting observatories 
¤  e.g., precision determinations of deuterium abundance dark energy/

matter content, structure history etc. 

¨  Laboratory neutrino mass/mixing measurements		
¤  mini/micro-BooNE, EXO, LBNE 

CIPANP2018 

Exci%ng	situa&on	developing	.	.	.		because	of	the	advent	of	.	.	.	

This	is	se2ng	up	an	over-determined	situa8on	where	new	
													Beyond	Standard	Model	neutrino	physics	may	manifest	
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Motivation (I): light nuclear reactions 

¨  Light nuclear reaction cross sections 
¤  Ab initio many-body approaches to reaction theory 

n  GFMC; NCSM; CHSH; RGM; ... 
¤  Phenomenological approaches 

n  Multichannel unitary R-matrix; non-linear constraint  

¤  Improve current theoretical/phenom. accuracies to ~ few % 
n  Recent [Marcucci etal: PRL116,102501’16] d(p,γ)3He modifies S-factor by 10% 

¨  Nuclear reaction network 

¤  determine completeness/accuracy of NRN 

¤  Verification & validation of  
    light nuclear reaction data 
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Motivation (II): neutrinos, BSM 

¨  Neutrino properties from precision cosmology 
¤  lepton number violation 

¤  Σmν; NB: dependence on neutrino spectra 

 

¨  BSM: Develop ability to test array of 
scenarios 
¤  Requires sub-percent precision abundances  
¤  Sterile neutrinos; heavy particle decay 

n  see Friday talk G. Fuller @ NMNM/TSEI: 
Parallel 8 
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3.4 Relation to Lab Experiments 63

Figure 19. Relationship between e↵ective neutrino mass as measured by NLDBD experiments versusP
i m⌫i as measured by cosmology for the inverted hierarchy. The gray band corresponds to a region

allowed by existing measurements where the width of the band is determined by the unknown Majorana
phase.

mass ordering. For example, KM3NeT/ORCA forecasts a 3� measurement of the mass ordering by around
2023. Accelerator neutrino experiments are the only known method for exploring neutrino CP violation and
in some cases, are also sensitive to neutrino mass ordering. In a ⇠ 5-year timescale, the currently operating
NO⌫A experiment [345] may determine the neutrino ordering at the 2–3� level, provided that �CP falls into
a favorable range. Hyper-K will measureme �CP , though it requires external input regarding the neutrino
ordering (e.g. from Hyper-K atmospheric neutrinos or from cosmology). The next-generation US-based
long-baseline neutrino-oscillation experiment, DUNE, is planned to start operation around 2024, and will
measure both the neutrino mass ordering (at the 2–4� level) and �CP . External input on neutrino ordering
from other sources such as CMB-S4 would provide a strong consistency check of DUNE results and test the
three-neutrino paradigm.

In the scenario where the neutrino mass specrtum is normally ordered and non-degenerate, CMB-S4 would
be a strong complement to terrestrial experiments by providing a measurement of neutrino ordering that is
independent of oscillation parameters and �CP . Under all circumstances, the combination of CMB-S4 with
terrestrial determinations of neutrino ordering will provide a definitive measurement of the neutrino mass
spectrum.

CMB-S4 Science Book

64 Neutrinos

Figure 20. Shown are the current constraints and forecast sensitivity of cosmology to the neutrino mass in
relation to the neutrino mass hierarchy. In the case of an “inverted ordering,” with an example case marked
as a diamond in the upper curve, the CMB-S4 (with DESI BAO prior) cosmological constraints would have
a very high-significance detection, with 1� error shown as a blue band. In the case of a normal neutrino mass
ordering with an example case marked as diamond on the lower curve, CMB-S4 would detect the lowestP

m⌫ at & 3�. Also shown is the sensitivity from the long baseline neutrino experiment (DUNE) as the
pink shaded band, which should be sensitive to the neutrino hierarchy. Figure adapted from the Snowmass
CF5 Neutrino planning document.

3.4.4 Sterile Neutrinos

Mechanisms of introducing neutrino mass often include sterile neutrinos, with both Majorana and Dirac
terms potentially contributing (e.g., Ref. [346]):

LD = �mD (⌫̄L⌫R + ⌫̄R⌫L) (3.36)

LM = �1

2
mT (⌫̄L⌫c

L + ⌫̄c
L⌫L) � 1

2
mS (⌫̄R⌫c

R + ⌫̄c
R⌫R) = �1

2
mT (⌫̄a⌫a) � 1

2
mS (⌫̄s⌫s) , (3.37)

where ⌫a ⌘ ⌫L + (⌫L)c and ⌫S ⌘ ⌫R + (⌫R)c are active and sterile Majorana two component spinors,
respectively. The mass mT can be generated by a Higgs triplet, i.e., mT = yT h�0

T i, or from a higher-
dimensional operator involving two Higgs doublets with coe�cients C/M. For dimension 5 operators, this
becomes the Type-I seesaw mechanism, where both Majorana and Dirac terms are present and mS � mD.

A number of recent neutrino oscillation experiments have reported anomalies that are possible indications of
four or more neutrino mass eigenstates. The first set of anomalies arose in short baseline oscillation experi-
ments. First, the Liquid Scintillator Neutrino Detector (LSND) experiment observed electron antineutrinos
in a pure muon antineutrino beam [347]. The MiniBooNE Experiment also observed an excess of electron
neutrinos and antineutrinos in their muon neutrino beam [348]. Two-neutrino oscillation interpretations
of these results indicate mass splittings of �m2 ⇡ 1 eV2 and mixing angles of sin2 2✓ ⇡ 3 ⇥ 10�3 [348].
Another anomaly arose from re-evaluations of reactor antineutrino fluxes that indicate an increased flux
of antineutrinos and a lower neutron lifetime. This commensurately increased the predicted antineutrino
events from nuclear reactors by 6%, causing previous agreement of reactor antineutrino experiments to have
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for the base cosmological model with Ne↵ = 3.046 (or even for
an extended scenario with free Ne↵) the CMB data predict the
primordial abundances, under the assumption of standard BBN,
with smaller uncertainties than those estimated for the measured
abundances. Furthermore, the CMB predictions are consistent
with direct abundance measurements.

6.4.1. Observational data on primordial abundances

The observational constraint on the primordial helium-4 fraction
used in this paper is YBBN

P = 0.2534 ± 0.0083 (68% CL) from
the recent data compilation of Aver et al. (2012), based on spec-
troscopic observations of the chemical abundances in metal-poor
H ii regions. The error on this measurement is dominated by sys-
tematic e↵ects that will be di�cult to resolve in the near future. It
is reassuring that the independent and conservative method pre-
sented in Mangano & Serpico (2011) leads to an upper bound
for YBBN

P that is consistent with the above estimate. The recent
measurement of the proto-Solar helium abundance by Serenelli
& Basu (2010) provides an even more conservative upper bound,
YBBN

P < 0.294 at the 2� level.
For the primordial abundance of deuterium, data points show

excess scatter above the statistical errors, indicative of system-
atic errors. The compilation presented in Iocco et al. (2009),
based on data accumulated over several years, gives yBBN

DP =
2.87 ± 0.22 (68% CL). Pettini & Cooke (2012) report an accu-
rate deuterium abundance measurement in the z = 3.04984 low-
metallicity damped Ly↵ system in the spectrum of QSO SDSS
J1419+0829, which they argue is particularly well suited to deu-
terium abundance measurements. These authors find yBBN

DP =
2.535 ± 0.05 (68% CL), a significantly tighter constraint than
that from the Iocco et al. (2009) compilation. The Pettini-Cooke
measurement is, however, a single data point, and it is impor-
tant to acquire more observations of similar systems to assess
whether their error estimate is consistent with possible sources
of systematic error. We adopt a conservative position in this pa-
per and compare both the Iocco et al. (2009) and the Pettini &
Cooke (2012) measurements to the CMB predictions

We consider only the 4He and D abundances in this paper.
We do not discuss measurements of 3He abundances since these
provide only an upper bound on the true primordial 3He frac-
tion. Likewise, we do not discuss lithium. There has been a
long standing discrepancy between the low lithium abundances
measured in metal-poor stars in our Galaxy and the predictions
of BBN. At present it is not clear whether this discrepancy is
caused by systematic errors in the abundance measurements, or
has an “astrophysical” solution (e.g., destruction of primordial
lithium) or is caused by new physics (see Fields 2011, for a re-
cent review).

6.4.2. Planck predictions of primordial abundances
in standard BBN

We first restrict ourselves to the base cosmological model, with
no extra relativistic degrees of freedom beyond ordinary neu-
trinos (and a negligible lepton asymmetry), leading to Ne↵ =
3.046 (Mangano et al. 2005). Assuming that standard BBN
holds, and that there is no entropy release after BBN, we can
compute the spectrum of CMB anisotropies using the relation
YP(!b) given by PArthENoPE. This relation is used as the de-
fault in the grid of models discussed in this paper; we use the
CosmoMC implementation developed by Hamann et al. (2008).
The Planck+WP+highL fits to the base ⇤CDM model gives the
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Fig. 29. Predictions of standard BBN for the primordial abundance of
4He (top) and deuterium (bottom), as a function of the baryon density.
The width of the green stripes corresponds to 68% uncertainties on nu-
clear reaction rates. The horizontal bands show observational bounds
on primordial element abundances compiled by various authors, and the
red vertical band shows the Planck+WP+highL bounds on !b (all with
68% errors). BBN predictions and CMB results assume Ne↵ = 3.046
and no significant lepton asymmetry.

following estimate of the baryon density,

!b = 0.02207 ± 0.00027 (68%; Planck+WP+highL), (83)

as listed in Table 5. In Fig. 29, we show this bound together
with theoretical BBN predictions for YBBN

P (!b) and yBBN
DP (!b).

The bound of Eq. (83) leads to the predictions

YBBN
P (!b) = 0.24725 ± 0.00032, (84a)
yBBN

DP (!b) = 2.656 ± 0.067, (84b)

where the errors here are 68% and include theoretical errors that
are added in quadrature to those arising from uncertainties in
!b. (The theoretical error dominates the total error in the case
of YP.)44 For helium, this prediction is in very good agreement
with the data compilation of Aver et al. (2012), with an error
that is 26 times smaller. For deuterium, the CMB+BBN pre-
diction lies midway between the best-fit values of Iocco et al.
(2009) and Pettini & Cooke (2012), but agrees with both at ap-
proximately the 1� level. These results strongly support standard
BBN and show that within the framework of the base ⇤CDM
model, Planck observations lead to extremely precise predic-
tions of primordial abundances.

6.4.3. Estimating the helium abundance directly from Planck
data

In the CMB analysis, instead of fixing YP to the BBN predic-
tion, YBBN

P (!b), we can relax any BBN prior and let this pa-
rameter vary freely. The primordial helium fraction has an influ-
ence on the recombination history and a↵ects CMB anisotropies
mainly through the redshift of last scattering and the di↵usion
damping scale (Hu et al. 1995; Trotta & Hansen 2004; Ichikawa
& Takahashi 2006; Hamann et al. 2008). Extending the base

44 Note that, throughout this paper, our quoted CMB constraints on all
parameters do not include the theoretical uncertainty in the BBN rela-
tion (where used).

A16, page 46 of 66
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BBN briefly (I) 
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e±(�i, �i)e
± ⇠ �j(�i, �i)�j � H

n(p, �)d � H

p(e�, �)H � H

n(�e, e
�)p ⇠ n(e+, �̄e)p � H Weak Decoupling (T~1 MeV) 

Weak Freeze-Out (T~.7 MeV) 
NSE Freeze-Out (T~10’s keV) 

Recombination (T~0.2 eV) 

H : Hubble rate

¨  Prior to CMB formation 
¨  Expansion driven freeze-outs 

¤  Hubble rate datum 

¨  Idealization 
¤  reality: epochs overlap 

significantly 



BBN briefly (II) 

¨  Early FLRW universe 
¤  Homogeneous & isotropic 

¤  Hubble expansion drives out-of-
equilibrium dynamics 

¤  Cooling thermonuclear fusion reactor 
n  nuclei bathed in neutrinos/photons 
n  produces 4He (YP), D, 3He & 7Li 
n  NB: out-of-equilibrium 

¨  Status of observation 
¤  [now] ↦ [planned] 
¤  YP ~ 5% ↦ ~ 1% 

¤  D/H ~ 2% ↦ ≲ O(1%) 
¤  7Li ~ O(50%) ↦ O(few %) 

CIPANP2018 29 May 

Quantum E↵ects on Cosmological Observables Project # 20170430ER

Quantum E↵ects on Cosmological Observables: Probing Physics
Beyond the Standard Model

Research Goals
Accuracies in current and forthcoming cosmological observations at the level of a percent and bet-
ter have rendered anachronistic the quip that “error bars in cosmology belong on the exponent.”
Current measurements of the cosmic microwave background (CMB) radiation and of primordial deu-
terium – synthesized in the cosmic fireball of the Big Bang – are concrete, if uncommon, examples of
cosmological observables that enjoy percent-level precision. The tantalizing prospect of exploiting
precision cosmological observables, which will be made commonplace by imminent developments
in instrumentation including 30-meter class telescopes, requires improved theoretical computations
of the multiphysics at work in the early universe; approaches currently employed are unreliable at
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Figure 1: Primoridal nuclear abundances
computed with burst[1] (curves) as a func-
tion of baryon density. Vertical bands give
observed baryon density; horizontal bands
are observed abundances.

the sub-percent level. We propose cross-cutting research
in a two-phase program that enables new insights into
physics beyond the standard model. Phase one will de-
velop a self-consistent theoretical representation of the
standard model of nuclear/particle physics and cosmol-
ogy in the early universe consistent with quantum me-
chanics and field theory. This phase will complete with
a quantum-physics based upgrade of a prototype code
called burst that evolves the expanding universe in time
and keeps track of its energy and matter constituents
from high temperature to low temperature, computing
the amount of nuclei along the way. The second phase
will explore beyond-standard-model (BSM) scenarios. By

developing this unique LANL code capability we

define an emergent field at the intersection of pre-

cision cosmology, high-quality theoretical model-

ing, and high-performance computing for large-

scale simulation. Such a program, which aims to shed
light on the elusive physics of the dark sector, beyond
the standard model, is strongly aligned with LANL Nu-
clear and Paricle Futures Pillar (NPF) mission goals in
Applied Nuclear Science and Engineering and Nuclear,
Particle, Astrophysics and Cosmology, the DOE Nuclear Science Advisory Committee Recommen-
dations, and the DOE High Energy Physics Advisory Panel P5 Report. It holds the potential to
reveal previously undetermined phenomena such as the nature of dark matter, the possibility of
dark radation, and o↵ers a solution of the long standing ‘lithium problem.’ The sub-percent accu-
rate calculational tool we propose constitutes a new capability in the Verification and Validation
of nuclear reaction cross sections, important for a variety of LANL programmatic e↵orts.

Background and Significance
The synthesis of nuclides in the young universe is our earliest direct probe of its extreme conditions;
its study a↵ords a window on physics beyond the standard model. In the early universe the light
elements were formed subject to intense fluxes of photons (what is now the CMB) and neutrinos
⌫ (today’s C⌫B) at very high temperature (⇠ 1010 K), entropy and a baryon density comparable
to that of air. Figure 1 shows predictions for 4He (YP ), deuterium (D), 3He and lithium (7Li)
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¨  Early FLRW universe 
¤  Homogeneous & isotropic 

¤  Hubble expansion drives out-of-
equilibrium dynamics 

¤  Cooling thermonuclear fusion reactor 
n  nuclei bathed in neutrinos/photons 
n  produces 4He (YP), D, 3He & 7Li 
n  NB: out-of-equilibrium 

¨  Status of observation 
¤  [now] ↦ [planned] 
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the sub-percent level. We propose cross-cutting research
in a two-phase program that enables new insights into
physics beyond the standard model. Phase one will de-
velop a self-consistent theoretical representation of the
standard model of nuclear/particle physics and cosmol-
ogy in the early universe consistent with quantum me-
chanics and field theory. This phase will complete with
a quantum-physics based upgrade of a prototype code
called burst that evolves the expanding universe in time
and keeps track of its energy and matter constituents
from high temperature to low temperature, computing
the amount of nuclei along the way. The second phase
will explore beyond-standard-model (BSM) scenarios. By

developing this unique LANL code capability we

define an emergent field at the intersection of pre-

cision cosmology, high-quality theoretical model-

ing, and high-performance computing for large-

scale simulation. Such a program, which aims to shed
light on the elusive physics of the dark sector, beyond
the standard model, is strongly aligned with LANL Nu-
clear and Paricle Futures Pillar (NPF) mission goals in
Applied Nuclear Science and Engineering and Nuclear,
Particle, Astrophysics and Cosmology, the DOE Nuclear Science Advisory Committee Recommen-
dations, and the DOE High Energy Physics Advisory Panel P5 Report. It holds the potential to
reveal previously undetermined phenomena such as the nature of dark matter, the possibility of
dark radation, and o↵ers a solution of the long standing ‘lithium problem.’ The sub-percent accu-
rate calculational tool we propose constitutes a new capability in the Verification and Validation
of nuclear reaction cross sections, important for a variety of LANL programmatic e↵orts.

Background and Significance
The synthesis of nuclides in the young universe is our earliest direct probe of its extreme conditions;
its study a↵ords a window on physics beyond the standard model. In the early universe the light
elements were formed subject to intense fluxes of photons (what is now the CMB) and neutrinos
⌫ (today’s C⌫B) at very high temperature (⇠ 1010 K), entropy and a baryon density comparable
to that of air. Figure 1 shows predictions for 4He (YP ), deuterium (D), 3He and lithium (7Li)
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Self-consistent neutrino transport 

¨  “Self-consistent” 
¤  Previous approaches evolve neutrinos and ‘post-process’ BBN 

n ΔYP~0.05%: very small; currently unmeasurable 
¤  Current approach solves neutrino energy transport and BBN concurrently 

n ΔYP~1%: possibly observable with ELT’s 

¨  Neutrino energy transport in the early universe 
¤  Solve the neutrino quantum kinetic equations 

n  Allow lepton number asymmetry 
n  18:10 [340] Neutrino Flavor Transformation and the Cosmic Lepton 

Asymmetry JOHNS, Luke [Friday NMNM/TSEI Parallel 8] 
¤  Describe e+/e-/photon/baryon plasma in terms of equilibrium 

distributions for all times/temperatures 

29 May CIPANP2018 



Neutrino Boltzmann kinetic equation 

¨  Semi-classical kinetics 

¤  Effects beyond thermodynamic approach: 
n  distortion of F-D equil. spectra  
n  entropy generation and flow from plasma 

to neutrinos 
n  upscattering of low-energy ν 
n  nonlinearties in feedback between 
νevolution and BBN 

¤  Deviation from relativistic species’ energy 

29 May CIPANP2018 

1þ 2 ↔ 3þ 4; ð7Þ

where particle 1 is always a neutrino (or antineutrino). We
label neutrino four-momenta as Pi and charged lepton four-
momenta as Qi.
The hjMrj2i are different for electron-flavor neutrinos

compared to μ or τ-flavor neutrinos due to the charged-
current interaction, which alters the factor 2 sin2 θW − 1 to
2 sin2 θW þ 1.1 The Weinberg angle θW is taken as
sin2 θW ≈ 0.23. At the energy scales of interest here the
μ and τ neutrino species have the same interactions.

1. Collision integrals

Given the amplitudes Mr of Table I, we may calculate
the collision integral of Eq. (1):

CðrÞ
ν1 ½fj% ¼

1

2E1

Z
d3p2

ð2πÞ32E2

d3p3

ð2πÞ32E3

d3p4

ð2πÞ32E4

× ð2πÞ4δð4ÞðP1 þ P2 − P3 − P4ÞSrhjMrj2i
× Frðp1; p2; p3; p4Þ; ð8Þ

where Sr is the symmetrization factor for identical particles,
and

Frðp1; p2; p3; p4Þ ¼ ½1 − f1%½1 − f2%f3f4
− f1f2½1 − f3%½1 − f4%; ð9Þ

¼ FðþÞ
r − Fð−Þ

r : ð10Þ

Here we have suppressed time dependence and written the
occupation probability functions in abbreviated form. For
example, f1 for r ¼ 1 would read fν1ðp1; tÞ. The quantities
Fð'Þ
r , corresponding to the first and second lines of Eq. (9),

give the probability for scattering into ðþÞ or out of ð−Þ the
phase space volume for particle “1”; they include Pauli
blocking factors ∼ð1 − fiÞ. The phase space measure for
particles 2, 3, and 4, and the arguments of the four-
momentum conserving delta function δð4ÞðP1 þ P2 − P3 −
P4Þ and of Fr are written schematically with the depend-
ence of pi on r, which can either be four-momentum Pi or
Qi, suppressed. The factor ð2E1Þ−1 ensures that an integral
over d3p1=ð2πÞ3 of the collision integral for f1 vanishes in
number-conserving processes; this is discussed in more
detail in Sec. II C. All amplitudes in Table I are proportional
to GF, the Fermi coupling constant. The square of the
Fermi coupling and a factor of T5

cm may be taken outside of
the collision integral [Eq. (8)] to give a dimensionless
expression with integration variable ϵ, the binning param-
eter for the occupation probabilities. The product G2

FT
5
cm

has dimensions of energy or inverse time, appropriate to
that for a rate. The expression for the collision integral
appearing in Eq. (1) is

Cνi ½fj% ¼
X

r

CðrÞ
νi ½fj% ð11Þ

for processes r that include νi.

TABLE I. Weak interaction processes relevant for neutrino weak decoupling. The left column labels the scattering, production, and
annihilation processes in the middle column by an index r. The right column gives the spin-averaged and summed square of the matrix
element Mr for process r with the Fermi constant and symmetry factor Sr divided out. Indices i and j in the middle column for
processes r ¼ 1;…; 5, which describe neutrino and antineutrino scattering, are distinct. Processes with an antineutrino scattering on a
charged lepton, correspond to the parity-conjugate reactions of r ¼ 6;…; 9. Since they have identical matrix elements to these they are
not shown in the table, although their effect is explicitly accounted for in antineutrino energy transport. Sr is unity for all processes
except r ¼ 1, where S1 ¼ 1=2.

r Process G−2
F SrhjMrj2i

1 νi þ νi ↔ νi þ νi 26ðP1 · P2ÞðP3 · P4Þ
2 νi þ νj ↔ νi þ νj 25ðP1 · P2ÞðP3 · P4Þ
3 νi þ ν̄i ↔ νi þ ν̄i 27ðP1 · P4ÞðP2 · P3Þ
4 νi þ ν̄j ↔ νi þ ν̄j 25ðP1 · P4ÞðP2 · P3Þ
5 νi þ ν̄i ↔ νj þ ν̄j 25ðP1 · P4ÞðP2 · P3Þ
6 νe þ e− ↔ e− þ νe 25½ð2sin2θW þ1Þ2ðP1 ·Q2ÞðQ3 ·P4Þþ4sin4θWðP1 ·Q3ÞðQ2 ·P4Þ−2sin2θWð2sin2θW þ1Þm2

eðP1 ·P4Þ%
7 νμðτÞ þ e− ↔ e− þ νμðτÞ 25½ð2sin2θW −1Þ2ðP1 ·Q2ÞðQ3 ·P4Þþ4sin4θWðP1 ·Q3ÞðQ2 ·P4Þ−2sin2θWð2sin2θW −1Þm2

eðP1 ·P4Þ%
8 νe þ eþ ↔ eþ þ νe 25½ð2sin2θW þ1Þ2ðP1 ·Q3ÞðQ2 ·P4Þþ4sin4θWðP1 ·Q2ÞðQ3 ·P4Þ−2sin2θWð2sin2θW þ1Þm2

eðP1 ·P4Þ%
9 νμðτÞ þ eþ ↔ eþ þ νμðτÞ 25½ð2sin2θW −1Þ2ðP1 ·Q3ÞðQ2 ·P4Þþ4sin4θWðP1 ·Q2ÞðQ3 ·P4Þ−2sin2θWð2sin2θW −1Þm2

eðP1 ·P4Þ%
10 νe þ ν̄e ↔ e− þ eþ 25½ð2sin2θW þ1Þ2ðP1 ·Q4ÞðP2 ·Q3Þþ4sin4θWðP1 ·Q3ÞðP2 ·Q4Þþ2sin2θWð2sin2θW þ1Þm2

eðP1 ·P2Þ%
11 νμðτÞ þ ν̄μðτÞ ↔ e− þ eþ 25½ð2sin2θW −1Þ2ðP1 ·Q4ÞðP2 ·Q3Þþ4sin4θWðP1 ·Q3ÞðP2 ·Q4Þþ2sin2θWð2sin2θW −1Þm2

eðP1 ·P2Þ%

1We note some typographical differences between Table I and
Tables I and II in DHS. Row 10 here corresponds to Row 6 of
Table I in DHS. While the expression G−2

F S6hjM6j2i is the same
as that of DHS, the third particle [see Eq. (7)] in our row 10 is an
electron, and the third particle of row 6 in Table I of DHS is a
positron, which should result in a different expression. This
discrepancy also occurs between our row 11 and row 6 of Table II
in DHS. Our expression for r ¼ 10, however, agrees with that of
row 7 of Table I in Ref. [6].
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principal respects. First, the transfer of entropy from the
photon/electron/positron plasma to the neutrino seas cools
the plasma temperature relative to the case of no transport.
The cooler temperature alters the ratio of comoving to
plasma energy scales from the canonical value ð4=11Þ1=3 ≈
0.7138 [22–24].
The second out-of-equilibrium effect is the distortion of

the thermal Fermi-Dirac (FD) spectrum of high-energy
neutrinos. Upscattering of low-energy neutrinos and the
production of neutrino-antineutrino pairs contribute to this
distortion through a variety of mechanisms. An important
consequence of this mechanism is the effect that the high-
energy distortion has on the neutron-to-proton ratio (n=p).
A running theme throughout the present study is that such
changes induced by the distortion of the neutrino distri-
butions away from equilibrium have effects that must be
calculated concurrently with the evolution of the nuclide
abundances. In this way, we reveal nonlinearities in feed-
back mechanisms between the neutrino transport and the
thermodynamics of the plasma. These changes to the
temperature evolution have an effect on relative changes
in the nuclide abundances through the reaction rates and the
sensitive dependence of, for example, Coulomb barriers on
temperature.
The third out-of-equilibrium effect is entropy produc-

tion. The Boltzmann H theorem implies that the entropy of
a closed system is a nondecreasing function of time. In this
paper, we investigate the conventional assumption [22,24]
of comoving entropy conservation. We find that there is a
small change in the total entropy of the Universe due to the
nonequilibrium kinetics of the neutrinos, which generates
entropy. In essence, out-of-equilibrium neutrino energy
transport and associated entropy flow changes the phasing
between scale factor and plasma temperature evolution.
A common feature of past works is that the effect of

these transport/entropy issues on the primordial abundan-
ces is small, typically on the order of 0.05% for helium-4
and lithium (in particular, see Ref. [7], hereafter DHS). Our
work shows that the magnitude of these effects can be
significantly larger, depending on assumed microphysics.
The present work employs a nonperturbative method to

calculate the evolution of active neutrino occupation
probabilities fνiðp; tÞ for flavor i ¼ e, μ, τ. Homogeneity
and isotropy has been assumed to restrict the dependence of
the fνi to only the magnitude of the three-momentum p and
the comoving time t. The evolution is computed in the
presence of two-body to two-body (2 → 2) collisions, the
rates of which are given by the collision integrals Cνi ½fj%,
where fj refers to the occupation probabilities of neutrinos,
antineutrinos, and charged leptons. These are functionals of
the set of neutrino and antineutrino occupation probabilities
fνj and evolve, within the Boltzmann equation approach, as

! ∂
∂t −HðaÞp ∂

∂p
"
fνiðp; tÞ ¼ Cνi ½fj%; ð1Þ

where HðaÞ is the Hubble expansion rate at scale factor a.
We define the independent variable ϵ≡ Eν=Tcm using the
neutrino energy Eν and the comoving temperature param-
eter Tcm. The comoving temperature parameter is not a
physical temperature. It is simply an energy scale that
redshifts like the energy of a massless particle in free fall
with the expansion of the Universe and is, in essence, a
proxy for inverse scale factor. Therefore, we can write
TcmðaÞ ¼ T inain=aðtÞ as a function of scale factor, where
T in and ain are the plasma temperature and scale factor at an
initial epoch of our choosing. For neutrinos in the range of
plasma temperatures 3 MeV≳ T ≳ 10 keV, ϵ is equivalent
to the commonly used quantity ~ϵ ¼ p=Tcm. Equation (1)
can be cast in terms of ϵ as

d
dt

fνiðϵ; tÞ ¼ Cνi ½fj%: ð2Þ

The independent variable ϵ is chosen so that energy
conservation takes the simple form ϵ1 þ ϵ2 ¼ ϵ3 þ ϵ4 for
the scattering process 1þ 2 ↔ 3þ 4.
The evaluation of the collision integral in Eq. (1) or (2)

for the weak-interaction processes of interest is numerically
intensive. However, the required integrations (described in
detail in Sec. II B 3 and Appendixes B and C) are
performed in parallel with the code BURST (BBN/Unitary/
Recombination/Self-consistent/Transport) in Fortran 90/95
under OPENMPI. We have developed a routine to evaluate
the collision term for the Boltzmann equation in BURST

(using methods detailed in the appendixes) which reduce
the number of required integrations to two. Numerical
integration, effected under a combination of quadrature
techniques (detailed in Sec. II), has been tested by ensuring
conservation of lepton number; it is satisfied at the level of
10−14 (see Sec. II C 2).
The code has been developed to address the problem of

weak-decoupling collision terms and for self-consistent
coupling to nuclear reactions assuming that a Boltzmann
equation treatment is sensible.The“embarrassinglyparallel”
structure of the problem allows for the simultaneous
evaluation of the occupation probabilities fνi for each
energy, implying a nearly linear scaling of code perfor-
mance with the number of cores. The present calculational
approach is readily generalizable to treat the full neutrino
quantum kinetic equations (QKEs) developed in Ref. [25]
and therefore neutrino flavor oscillations (see Refs. [26–35]
for discussion on the QKEs). As mentioned, the present
work neglects neutrino flavor oscillations. A detailed
calculation that concurrently solves the neutrino QKE
equations, incorporating both effects of flavor oscillations
and energy transport, and the primoridal nucleosynthesis is
required and currently underway. An example of the need
for such a calculation is indicated by the high sensitivity of
the n=p ratio at weak freeze-out to the electron neutrino
energy distrubtion (see Sec. III). One of the primary effects
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1þ 2 ↔ 3þ 4; ð7Þ

where particle 1 is always a neutrino (or antineutrino). We
label neutrino four-momenta as Pi and charged lepton four-
momenta as Qi.
The hjMrj2i are different for electron-flavor neutrinos

compared to μ or τ-flavor neutrinos due to the charged-
current interaction, which alters the factor 2 sin2 θW − 1 to
2 sin2 θW þ 1.1 The Weinberg angle θW is taken as
sin2 θW ≈ 0.23. At the energy scales of interest here the
μ and τ neutrino species have the same interactions.

1. Collision integrals

Given the amplitudes Mr of Table I, we may calculate
the collision integral of Eq. (1):

CðrÞ
ν1 ½fj% ¼

1

2E1

Z
d3p2

ð2πÞ32E2

d3p3

ð2πÞ32E3

d3p4

ð2πÞ32E4

× ð2πÞ4δð4ÞðP1 þ P2 − P3 − P4ÞSrhjMrj2i
× Frðp1; p2; p3; p4Þ; ð8Þ

where Sr is the symmetrization factor for identical particles,
and

Frðp1; p2; p3; p4Þ ¼ ½1 − f1%½1 − f2%f3f4
− f1f2½1 − f3%½1 − f4%; ð9Þ

¼ FðþÞ
r − Fð−Þ

r : ð10Þ

Here we have suppressed time dependence and written the
occupation probability functions in abbreviated form. For
example, f1 for r ¼ 1 would read fν1ðp1; tÞ. The quantities
Fð'Þ
r , corresponding to the first and second lines of Eq. (9),

give the probability for scattering into ðþÞ or out of ð−Þ the
phase space volume for particle “1”; they include Pauli
blocking factors ∼ð1 − fiÞ. The phase space measure for
particles 2, 3, and 4, and the arguments of the four-
momentum conserving delta function δð4ÞðP1 þ P2 − P3 −
P4Þ and of Fr are written schematically with the depend-
ence of pi on r, which can either be four-momentum Pi or
Qi, suppressed. The factor ð2E1Þ−1 ensures that an integral
over d3p1=ð2πÞ3 of the collision integral for f1 vanishes in
number-conserving processes; this is discussed in more
detail in Sec. II C. All amplitudes in Table I are proportional
to GF, the Fermi coupling constant. The square of the
Fermi coupling and a factor of T5

cm may be taken outside of
the collision integral [Eq. (8)] to give a dimensionless
expression with integration variable ϵ, the binning param-
eter for the occupation probabilities. The product G2

FT
5
cm

has dimensions of energy or inverse time, appropriate to
that for a rate. The expression for the collision integral
appearing in Eq. (1) is

Cνi ½fj% ¼
X

r

CðrÞ
νi ½fj% ð11Þ

for processes r that include νi.

TABLE I. Weak interaction processes relevant for neutrino weak decoupling. The left column labels the scattering, production, and
annihilation processes in the middle column by an index r. The right column gives the spin-averaged and summed square of the matrix
element Mr for process r with the Fermi constant and symmetry factor Sr divided out. Indices i and j in the middle column for
processes r ¼ 1;…; 5, which describe neutrino and antineutrino scattering, are distinct. Processes with an antineutrino scattering on a
charged lepton, correspond to the parity-conjugate reactions of r ¼ 6;…; 9. Since they have identical matrix elements to these they are
not shown in the table, although their effect is explicitly accounted for in antineutrino energy transport. Sr is unity for all processes
except r ¼ 1, where S1 ¼ 1=2.

r Process G−2
F SrhjMrj2i

1 νi þ νi ↔ νi þ νi 26ðP1 · P2ÞðP3 · P4Þ
2 νi þ νj ↔ νi þ νj 25ðP1 · P2ÞðP3 · P4Þ
3 νi þ ν̄i ↔ νi þ ν̄i 27ðP1 · P4ÞðP2 · P3Þ
4 νi þ ν̄j ↔ νi þ ν̄j 25ðP1 · P4ÞðP2 · P3Þ
5 νi þ ν̄i ↔ νj þ ν̄j 25ðP1 · P4ÞðP2 · P3Þ
6 νe þ e− ↔ e− þ νe 25½ð2sin2θW þ1Þ2ðP1 ·Q2ÞðQ3 ·P4Þþ4sin4θWðP1 ·Q3ÞðQ2 ·P4Þ−2sin2θWð2sin2θW þ1Þm2

eðP1 ·P4Þ%
7 νμðτÞ þ e− ↔ e− þ νμðτÞ 25½ð2sin2θW −1Þ2ðP1 ·Q2ÞðQ3 ·P4Þþ4sin4θWðP1 ·Q3ÞðQ2 ·P4Þ−2sin2θWð2sin2θW −1Þm2

eðP1 ·P4Þ%
8 νe þ eþ ↔ eþ þ νe 25½ð2sin2θW þ1Þ2ðP1 ·Q3ÞðQ2 ·P4Þþ4sin4θWðP1 ·Q2ÞðQ3 ·P4Þ−2sin2θWð2sin2θW þ1Þm2

eðP1 ·P4Þ%
9 νμðτÞ þ eþ ↔ eþ þ νμðτÞ 25½ð2sin2θW −1Þ2ðP1 ·Q3ÞðQ2 ·P4Þþ4sin4θWðP1 ·Q2ÞðQ3 ·P4Þ−2sin2θWð2sin2θW −1Þm2

eðP1 ·P4Þ%
10 νe þ ν̄e ↔ e− þ eþ 25½ð2sin2θW þ1Þ2ðP1 ·Q4ÞðP2 ·Q3Þþ4sin4θWðP1 ·Q3ÞðP2 ·Q4Þþ2sin2θWð2sin2θW þ1Þm2

eðP1 ·P2Þ%
11 νμðτÞ þ ν̄μðτÞ ↔ e− þ eþ 25½ð2sin2θW −1Þ2ðP1 ·Q4ÞðP2 ·Q3Þþ4sin4θWðP1 ·Q3ÞðP2 ·Q4Þþ2sin2θWð2sin2θW −1Þm2

eðP1 ·P2Þ%

1We note some typographical differences between Table I and
Tables I and II in DHS. Row 10 here corresponds to Row 6 of
Table I in DHS. While the expression G−2

F S6hjM6j2i is the same
as that of DHS, the third particle [see Eq. (7)] in our row 10 is an
electron, and the third particle of row 6 in Table I of DHS is a
positron, which should result in a different expression. This
discrepancy also occurs between our row 11 and row 6 of Table II
in DHS. Our expression for r ¼ 10, however, agrees with that of
row 7 of Table I in Ref. [6].
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we find ΔNeff ¼ 0.034. The quantities δρνe , δρνμ , Tcm=T,
and Neff all agree closely with both Ref. [11] and DHS.
Figure 5 shows how the energy densities, Neff , and

Tcm=T evolve with Tcm until they reach their asymptotic
values. The δρνe and δρνμ are computed from Eq. (21) and
the relative change in Tcm=T is computed by comparing the
evolution of the temperature with transport ðTcm=TÞall and
without ðTcm=TÞnone:

δðTcm=TÞ ¼
ðTcm=TÞall − ðTcm=TÞnone

ðTcm=TÞnone
: ð30Þ

Finally, to calculate the time evolution change in Neff , we
use

ΔtNeff ≡ ½1þ δðTcm=TÞ&4

× ½ð1þ δρνeÞ þ 2ð1þ δρνμÞ& − 3; ð31Þ

where the subscript t denotes time dependence, in contrast
to the asymptotic limit of Eq. (24). As may be seen in
Fig. 5, Neff does not converge to 3.034, the value consistent
with DHS. The reason its asymptotic value is instead 3.033
is due to the fact that the run with no transport has
ðTcm=TÞnone ≠ ð4=11Þ1=3 in the asymptotic limit. If we
assume the neutrinos are in thermal equilibrium for
T > T in, the temperature ratio incurs a modification from
the finite electron rest mass as

!
Tcm

T

"

none
¼

!
4

11

"
1=3

!
1þ 5

22π2
z2
"
; ð32Þ

to second order in z≡me=T in. Setting T in ¼ 8 MeV, we
find an altered Tcm=T gives ΔNeff ¼ 0.001.
The evolution of δðTcm=TÞ in Fig. 5 displays interesting

features that are driven by the specifics of the loss of
entropy in the plasma from the annihilation of electrons and
positrons to neutrinos and the transfer of entropy from
electrons/positrons to photons through annihilation (see
Sec. IV for a detailed discussion of entropy). The annihi-
lation of electrons and positrons into neutrinos can be seen
in the rise of the δρν curves in Fig. 5. For Tcm ≳ 200 keV,
entropy is lost from the plasma into the neutrino seas
resulting in a lower plasma temperature for the transport
case (where entropy is lost) versus the no-transport case
(where entropy is not lost). The increase in δðTcm=TÞ for
Tcm ≳ 400 keV is caused by this entropy loss.
To analyze the entropy transfer from the electron/

positron components to the photons, we need the total
number densities of electrons and positrons

ne'ðT;∓μÞ ¼ 2

Z
d3p
ð2πÞ3

fe'ðE; T;∓μÞ; ð33Þ

which, in local thermodynamic equilibrium, are solely
functions of the plasma temperature and the electron
chemical potential. Figure 5 shows a different phasing of
scale factor and temperature for the two cases. At a given
Tcm, the plasma temperature is always lower in the trans-
port case versus the no-transport case.
Using a notation similar to that of Eq. (30), we define

the absolute change in the number density of charged
leptons as

FIG. 5. Quantities related to energy density and temperature are
plotted against the comoving temperature parameter. The blue
solid curve shows the change in Neff using Eq. (31). The red
dashed curve shows the relative change in the energy density of
νe. The green dash-dot curve shows the relative change in the
energy density of νμ. The magenta dotted curve shows the relative
change in Tcm=T using Eq. (30). At a given Tcm, δTcm=T > 0 is
equivalent to a lower plasma temperature in the transport case
compared to no transport.

FIG. 4. The normalized change in the differential energy
density [Eq. (29)] as a function of ϵ. The electron neutrinos
exhibit a larger change compared to the muon neutrinos. The
antineutrino evolution is nearly identical to the neutrino evolution
for all flavors.

E. GROHS et al. PHYSICAL REVIEW D 93, 083522 (2016)

083522-10

respectively. The summation over ν is for the three flavors
of neutrinos and antineutrinos and the denominators in
these expressions are strictly positive. We evaluate the sum
rules including contributions only from processes isolated
within the neutrino seas, i.e., r ¼ 1; 2;…; 5 in Table I to
gauge the effectiveness of the numerical evaluation in
respecting number and energy conservation. The spectra
of the charged leptons are assumed to be described by
equilibrium distributions so scattering processes involving
electrons and positrons will not preserve the sum rules as
written in Eqs. (16) and (17).
The neutrinos are assumed, in our computational

approach, to be in thermal equilibrium with the electrons
and positrons until a temperature T in ≫ 1 MeV. The
comoving temperature and plasma temperature are equal
for all temperatures greater than the input temperature:
T ¼ Tcm ≥ T in. At T in, we commence evaluation of the
collision integrals and evolve the neutrino occupation
probabilities until a comoving temperature Tstop. The
computation approach adopted in BURST utilizes an adap-
tive Cash-Karp [43] time step. It evolves observables at
∼3 × 104 steps on the interval defined by T in and Tstop with
a fifth-order Runge-Kutta (RK5) algorithm. All simulations
in this paper have ϵmax ¼ 20.0, Nbins ¼ 100, T in ¼ 8 MeV,
and εðnet=FRSÞ ¼ 30.0. The terminal temperature is
Tstop ¼ 15 keV, corresponding to a plasma temperature
of T ∼ 20 keV. In thermal equilibrium, the total scaled
errors are small but nonzero and evaluate to∼10−12 for both
the number and energy sum rules for 100 bins.
We monitor the total scaled errors of Eqs. (16) and (17) at

each time step during our weak decoupling calculations. On
average, we maintain accuracy to better than one part in 106

over the entire run.

2. Neutrino lepton number conservation

Elastic processes satisfy

Z
d3pCðrÞ

νi ðpÞ ¼ 0; ð18Þ

since the processes r ¼ 1;…; 4 and r ¼ 6;…; 9 (and their
antineutrino counterparts) conserve neutrino (antineutrino)
number. The annihilation processes, r ¼ 5, 10 and 11
satisfy, for example

Z
d3p½Cðνeν̄e;νμν̄μÞ

νe ðpÞ − Cðνeν̄e;νμν̄μÞ
ν̄e ðpÞ% ¼ 0; ð19Þ

Z
d3p½Cðνeν̄e;νμν̄μÞ

νμ ðpÞ − Cðνeν̄e;νμν̄μÞ
ν̄μ ðpÞ% ¼ 0: ð20Þ

Analogous relations hold for other annihilation processes
that fall under the reaction classes r ¼ 5, 10 and 11.

We have confirmed that the neutrino lepton numbers are
conserved at the level of ≲10−14 for all values of the scale
factor aðtÞ.

III. RESULTS IN THE NEUTRINO SECTOR

Our treatment of the Boltzmann-equation evolution of
the neutrino energy transport reveals novel features of the
transport characteristics of the active neutrino sector. We
focus first on these results, which are largely independent
of the coupling to BBN through the nuclear reaction
network. The present calculations reveal, in particular, that
the history of e& annihilation to photons displays a rich set
of behaviors that has not been discussed before. We also
look into the role of QED radiative corrections. These
results are in line with previous work but they indicate that
a more comprehensive treatment of the plasma physics
during the epochs we consider is warranted.

A. Neutrino interactions and energy transport

Table II summarizes the neutrino energy transport
properties in the present calculations, which as mentioned
are carried out for computational parameters ϵmax ¼ 20.0,
Nbins ¼ 100, T in ¼ 8 MeV, Tstop ¼ 15 keV, and
εðnet=FRSÞ ¼ 30.0. In this section, we focus on the first
row of the table, when all of the weak interactions of
neutrinos (and the antineutrino reactions corresponding to
the parity conjugates of the reactions r ¼ 6;…; 9) are
computed. We discuss the results for selective process
evaluations corresponding to the remaining rows of this
table in the next section, Sec. III B. We briefly describe this
table to orient the subsequent discussion.
The first column of Table II lists the processes r from

Table I used for a given run. The second column gives the

TABLE II. Process-dependent changes in neutrino energy
density properties. For all runs ϵmax ¼ 20.0, Nbins ¼ 100,
T in ¼ 8 MeV, Tstop ¼ 15 keV, εðnet=FRSÞ ¼ 30.0. The first
column gives the processes used for a given run. The second
column is the ratio of comoving to plasma temperature. For
column two reference, ð4=11Þ1=3 ¼ 0.7138. Columns three and
four are the relative changes of the νe and νμ energy densities. The
quantity ΔNeff is given by Eq. (24). Round-off error of the
neglected fifth significant digit in columns 2, 3, and 4 accounts
for the one part in 104 discrepancy with column 5.

Processes Tcm=T 100 × δρνe 100 × δρνμ ΔNeff

All 0.7148 0.9282 0.3771 0.03397
10, 11 0.7147 0.9383 0.2867 0.03063
1, 2, 10, 11 0.7147 0.9268 0.2963 0.03078
1, 2, 3, 4, 5, 10, 11 0.7147 0.8557 0.3465 0.03136
6, 7, 8, 9 0.7140 0.1853 0.0639 0.00723
1, 2, 6, 7, 8, 9 0.7140 0.1724 0.0778 0.00753
1, 2, 3, 4, 5, 6, 7, 8, 9 0.7140 0.1559 0.0886 0.00763
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We write the total entropy change in the neutrino sector
as a summation over the individual species:

dsν
dt

¼ −
T3
cm

2π2nb

X6

i¼1

Z
∞

0
dϵϵ2Cνi ½fj# ln

!
fνi

1 − fνi

"
: ð47Þ

Assuming equilibrium distributions for photons, electrons,
and positrons, and ignoring the negligible contribution
from baryons, we compute the change in entropy of the
plasma employing equilibrium thermodynamics, taking
account of energy conservation. We assume that cooling
of the plasma occurs only due to interactions between
neutrinos and charged leptons in scattering and annihilation
processes. Heating due to nucleosynthesis, primarily from
the release of binding energy of 4He, is neglected since
the relative contribution of the binding energy heat to the
plasma is ∼10−9. This gives the change in entropy of the
plasma due to heating of the neutrinos:

dspl
dt

¼ 1

nbT
dq
dt

¼ − T4
cm

2π2nbT

X6

i¼1

Z
∞

0
dϵϵ3Cνi ½fj#; ð48Þ

where q is the energy flux per unit volume and the sum is
over neutrinos νi. The minus sign is required to define heat
flow q > 0 out of the plasma. The time derivative of the
total entropy per baryon is the sum of Eqs. (47) and (48):

dstot
dt

¼ − T3
cm

2π2nb

X6

i¼1

Z
∞

0
dϵϵ2Cνi ½fj#

×
#
ϵ
Tcm

T
þ ln

!
fi

1 − fi

"$
; ð49Þ

which must be positive to satisfy the H theorem [46].
We show the change in the entropy-per-baryon compo-

nents in Fig. 9. The blue curve of the top panel shows the
entropy per baryon of the plasma as a function of comoving
temperature. As expected, the plasma loses entropy as it
heats and decouples from the neutrinos. The green curve of
the middle panel gives the entropy per baryon in the
neutrino seas as a function of comoving temperature. It
is increasing due to heating from the plasma, also as
expected. The red curve in the lower panel is the sum of spl
and sν. As expected, it is a monotonically increasing
function of time. We discuss the role of the entropy flows
as shown in Fig. 9 in more detail below.
The lower panel of Fig. 9 shows that the epoch of weak

decoupling occurs over ∼103 Hubble times. Starting at the
left side of the figure at Tcm ¼ 8 MeV we see that entropy3

is already being exchanged between the plasma and the
neutrinos, although at a low rate. Until the comoving

temperature reaches about 2 MeV, this entropy exchange
between the components of the cosmic fluid occurs in
equilibrium since the total entropy (bottom panel) is
constant. Near 1 MeV, the total entropy begins to deviate
from its high-temperature, equilibrium value. In the region
of temperatures from 8 MeV > Tcm > 2 MeV, the rates of
equilibrium entropy exchange are increasing. The compo-
nent entropies (top and middle panels), near Tcm ≈ 1 MeV,
reach a point of inflection and, concomitantly, the total
entropy begins to increase, deviating significantly from its
high-temperature (low) value. More than half of the entropy
transferred to the neutrinos from the plasma is complete by
this temperature. As the comoving temperature continues to
drop, going below 1 MeV, heating becomes more effective
at changing the total entropy. During this epoch of entropy

FIG. 9. The entropy per baryon for three sectors as functions of
comoving temperature. The top panel (blue line) is the evolution
of the entropy per baryon in the plasma, spl. The middle panel
(green line) is the evolution of the entropy per baryon in the
neutrino sector, sν. The lower panel (red line) is the evolution of
the total entropy per baryon, stot.

TABLE III. Process-dependent changes in the plasma
entropy. For all runs ϵmax ¼ 20.0, Nbins ¼ 100, T in ¼ 8 MeV,
Tstop ¼ 15 keV, εðnet=FRSÞ ¼ 30.0. Column one gives the
processes used for a given run similar to Table II. The second
column is the initial entropy per baryon in the plasma at T in.
Column three is final spl at Tstop. Column four is the relative
change between columns two and three.

Processes 10−9 × sðiÞpl 10−9 × sðfÞpl ðsðiÞpl − sðfÞpl Þ=s
ðfÞ
pl

None 5.929 5.929 0
All 5.952 5.929 3.977 × 10−3

10, 11 5.950 5.929 3.574 × 10−3

1, 2, 10, 11 5.950 5.929 3.574 × 10−3

1, 2, 3, 4, 5, 10, 11 5.950 5.928 3.663 × 10−3

6, 7, 8, 9 5.933 5.929 7.426 × 10−4

1, 2, 6, 7, 8, 9 5.933 5.928 7.798 × 10−4

1, 2, 3, 4, 5, 6, 7, 8, 9 5.933 5.928 7.798 × 10−4
3We refer to “entropy” from here on, though it is to be

understood that this is the entropy per baryon.
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FIG. 10: (Color online) [Top panel] Evolution of nuclear abundances as a function of comoving temperature parameter.
[Middle panel] The evolution of the total entropy as a function of scale factor. [Lower panel] Evolution of entropy carried by
the photon/electron/positron plasma. Coulomb and zero-temperature radiative corrections are not included in this plot.

Processes YP �YP 105 ⇥ D/H �(D/H) 105 ⇥ 3He/H �(3He/H) 1010 ⇥ 7Li/H �(7Li/H)

None 0.2439 0 2.629 0 1.049 0 4.275 0

All 0.2423 �6.284 ⇥ 10�3 2.639 4.019 ⇥ 10�3 1.050 1.293 ⇥ 10�3 4.229 �1.082 ⇥ 10�2

10, 11 0.2439 0.0 2.636 2.788 ⇥ 10�3 1.050 1.293 ⇥ 10�3 4.260 �3.510 ⇥ 10�3

1, 2, 10, 11 0.2439 0.0 2.636 2.788 ⇥ 10�3 1.050 1.293 ⇥ 10�3 4.260 �3.510 ⇥ 10�3

1, 2, 3, 4, 5, 10, 11 0.2439 0.0 2.636 2.788 ⇥ 10�3 1.050 1.293 ⇥ 10�3 4.262 �3.042 ⇥ 10�3

6, 7, 8, 9 0.2440 5.394 ⇥ 10�4 2.630 5.051 ⇥ 10�4 1.049 0.0 4.275 0.0
1, 2, 6, 7, 8, 9 0.2440 5.394 ⇥ 10�4 2.630 5.051 ⇥ 10�4 1.049 0.0 4.275 0.0

1, 2, 3, 4, 5, 6, 7, 8, 9 0.2440 5.394 ⇥ 10�4 2.630 5.051 ⇥ 10�4 1.049 0.0 4.277 4.663 ⇥ 10�4

TABLE IV: Process-dependent changes in the BBN abundances. For all runs ✏
max

= 20.0, N
bins

= 100, T
in

= 8 MeV,
T
stop

= 15 keV, "(net/FRS) = 30.0. The first column gives the processes used for a given run similar to Table II. Column two
is the primordial mass fraction of 4He and column three is the relative change from the (N) baseline case with no neutrino
transport, i.e. the first row. Column four is the relative abundance of D and column five the relative change. Column six is the
relative abundance of 3He and column seven the relative change. Column eight is the relative abundance of 7Li and column
nine the relative change.

Processes YP �YP 105 ⇥ D/H �(D/H) 105 ⇥ 3He/H �(3He/H) 1010 ⇥ 7Li/H �(7Li/H)

None 0.2439 0 2.629 0 1.049 0 4.275 0

CC 0.2474 1.443 ⇥ 10�2 2.649 7.793 ⇥ 10�3 1.052 2.703 ⇥ 10�3 4.314 9.234 ⇥ 10�3

0T 0.2442 1.276 ⇥ 10�3 2.630 6.819 ⇥ 10�4 1.049 0.0 4.279 8.304 ⇥ 10�4

CC, 0T 0.2478 1.594 ⇥ 10�2 2.651 8.612 ⇥ 10�3 1.052 2.703 ⇥ 10�3 4.319 1.019 ⇥ 10�2

Trans 0.2423 �6.284 ⇥ 10�3 2.639 4.019 ⇥ 10�3 1.050 1.293 ⇥ 10�3 4.229 �1.082 ⇥ 10�2

CC, 0T, Trans 0.2461 8.999 ⇥ 10�3 2.662 1.255 ⇥ 10�2 1.054 4.253 ⇥ 10�3 4.270 �1.152 ⇥ 10�3

TABLE V: Changes in primordial abundances in BBN for Coulomb and radiative corrections. The first column gives the
processes used for a given run. Rows correspond to various corrections as: “CC” for Coulomb corrections; “0T” for zero-
temperature radiative corrections; “Trans” for neutrino transport calculation with computational parameters as given in Table
IV. The notation for the relative changes is the same as in Table IV. Row 4 is our (Q) baseline.
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production, the entropy generated by weak-interaction
driven kinetic processes is larger than the entropy lost
from the neutrinos. We note that, contrary to the
order-of-magnitude estimates of Eq. (6), the process of
weak decoupling, measured as the point at which the
derivatives drop below some near-zero value, lasts until
Tcm ≃ 90–100 keV, well into the epoch of BBN.
Table III shows the initial, final, and relative changes in

the entropy for the same runs as those performed in Sec. II.
The first row (“None”), corresponds to the “standard”
cosmology without transport. The second row (“All”)
corresponds to the curves in Fig. 9. Component contribu-
tions to the collision integrals, corresponding to various r in
Table I, are given in the remaining rows. Here it is apparent
that the dominant process contributing to entropy gener-
ation are due to the annihilation processes r ¼ 10 and 11.

V. WEAK FREEZE-OUT AND
NUCLEOSYNTHESIS

In this section we examine how the charged current weak
reactions involving nucleons and the strong and electro-
magnetic nuclear reactions are affected by the evolving
neutrino and plasma components. As outlined above, the
scattering-driven nonequilibrium evolution of the neutrino
energy distribution functions through the weak decoupling
epoch is nonlinearly coupled to the plasma thermodynamic
conditions. The plasma of photons, electrons, and positrons
is maintained in thermal equilibrium by electromagnetic
interactions whose rates are much faster than the Hubble
rate for all epochs under present consideration. The rapid
fall off in the weak interactions of neutrinos with neutrons
and protons, however, result in the weak freeze-out of the
n=p ratio where chemical equilibrium is no longer main-
tained even though thermal equilibrium still obtains.
Systems where equilibrium is maintained instantaneously
are, at any given time, insensitive to the previous history of
the system. Quantities characterizing systems which are out
of equilibrium, on the other hand, can be sensitive to
previous history. In fact, since the n=p ratio and nuclear
reactions are not in chemical equilibrium, the out-of-
equilibrium neutrino energy distributions alter BBN abun-
dance yields over the no-transport case.
As discussed in Appendix A, DHS (Ref. [7]) has taken

into account effects of neutrino transport during weak
decoupling on energy density, the weak interactions and the
plasma temperature derivative. The work of DHS, which is
most similar to our present treatment, however, employs a
perturbative approach for nucleosynthesis. There, the
primordial nucleosynthesis was “postprocessed” by using
the results from DHS’s prior solution of the coupled set of
neutrino Boltzmann equations. Our treatment concurrently
solves the Boltzmann equations for the neutrino occupation
probabilities and the light nuclide abundances or mass
fractions, given by

Yi ≡ ni
nb

and Xi ≡ AiYi; ð50Þ

where for a given species i: ni is the number density,Ai is the
atomic mass number, Yi is the abundance, andXi is the mass
fraction. The quantity nb is the baryon number density. This
fully coupled, self-consistent approach results in a significant
enhancement of effects that change the light element abun-
dances from the treatments without transport or with trans-
port included perturbatively, as we detail in this section.
In both our transport and no-transport BBN calculations

we employ the value of the baryon-to-photon ratio from
Ref. [47], corresponding to ωb ¼ Ωbh2 ¼ 0.022068. This
also corresponds to the final entropy per baryon in the
plasma of spl ¼ 5.929 × 109 units of Boltzmann’s constant.
We emphasize that these are the final values of these
quantities after all transport and entropy generating reac-
tions have ceased, i.e., as measured at the CMB decoupling
epoch. A standard BBN, baseline calculation assuming
constant comoving entropy, but not including QED and
other corrections, yields the following values for the
primordial mass fraction of 4He, relative abundances of
deuterium, 3He and 7Li (with respect to hydrogen):

YðNÞ
P ≡ X4He ¼ 0.2438; ð51Þ

ðD=HÞðNÞ ≡ YD=YH ¼ 2.627 × 10−5; ð52Þ

ð3He=HÞðNÞ ¼ 1.049 × 10−5; ð53Þ

ð7Li=HÞðNÞ ¼ 4.277 × 10−10: ð54Þ

We refer to the abundances in this baseline computation as
(N). The standard BBN calculation and associated reaction
network employed here is detailed in Refs. [36,39,48]. We
emphasize that the (N) baseline computation does not
include Coulomb corrections (CC), zero-temperature radi-
ative corrections (0T), and transport-induced corrections
(Trans). As an alternative baseline we consider the inclu-
sion of Coulomb corrections (given by Eq. (5b) in
Ref. [49]) to the reactions Eqs. (3) and (5) (on page 5);
and zero-temperature radiative corrections (Eq. (2.14) in
Ref. [1]) to reactions (3), (4), and (5). See Ref. [50] for a
detailed discussion of the Coulomb corrections to BBN.
The QED corrections discussed in Sec. III C are excluded
for this baseline. The helium-4 (hereafter shortened to
helium) mass fraction and relative abundances for this
baseline are

YðQÞ
P ¼ 0.2478; ð55Þ

ðD=HÞðQÞ ¼ 2.650 × 10−5; ð56Þ

ð3He=HÞðQÞ ¼ 1.052 × 10−5; ð57Þ
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¤  Coulomb corrected 

of flavor oscillation, whose subsequent effect on primordial
nucleosynthesis is difficult to estimate in a self-consistent
approach in the dynamic environment of the BBN-epoch of
the early universe, is the suppression of the νe þ n →
pþ e− rate. This suppression occurs when an electron
neutrino oscillates to either a νμ or ντ state, which do not
convert n ↔ p. A detailed, self-consistent calculation will
account for the phasings of various such mechanisms,
which may be important at the level of precision anticipated
for in the next generation of cosmological observations.
We emphasize that we couple neutrino-energy transport

self-consistently and concurrently to evaluation of the
neutron-to-proton rates and nucleosynthesis reaction net-
work. At each time step in BURST, the weak interaction
neutron-proton conversion rates (n ↔ p rates),

νe þ n ↔ pþ e−; ð3Þ

eþ þ n ↔ pþ ν̄e; ð4Þ

n ↔ pþ e− þ ν̄e; ð5Þ

are determined using the evolved, nonequilibrium νe and ν̄e
spectra. The thermodynamics of the electromagnetic
plasma is coupled to the neutrino seas to account for
heat flow between the plasma and the neutrinos. Non-
equilibrium effects generate entropy, increasing the total
entropy of the plasma and the neutrinos, through a timelike
entropy-current flux. Finally, we integrate the neutrino
occupation probabilities to determine the energy density for
calculating the Hubble expansion rate. In this way, self-
consistency within the neutrino sector is maintained over
approximately 108 Hubble times. The overall architecture
employed in BURST differs from the approaches used in
previous treatments (see Appendix A).
The nuclear reaction network employed in the current

code is based on those of Refs. [36,37] as augmented in
Ref. [38]; details are discussed in Ref. [39]. Ongoing work
is focused on incorporating into the present approach a
nuclear reaction network based on a reaction formalism that
respects unitarity.
The outline of this work is as follows. In Sec. II, we

present details of the transport code and weak-decoupling
calculations. We investigate, in Sec. III, the contributions of
the scattering processes to the out-of-equilibrium neutrino
spectra. Section IV describes the evolution of the entropy
during the weak-decoupling process. Section V discusses
primordial nucleosynthesis resulting from the self-
consistent coupling to the transport code. We conclude in
Sec. VI. Appendix A contains a summary of the calculations
of different groups. Appendixes B and C describe the
analytical derivations of the collision terms. We should
emphasize that the current manuscript represents a prelimi-
nary step toward the objective of coupling neutrino kinetics
to the nucleosynthesis reaction network. The proper treat-
ment of neutrino flavor oscillations and possible coherent

effects requires a quantum kinetic approach [25]. Flavor
oscillations have been estimated [12] to change the produc-
tion of 4He at the 20% level. The self-consistent approach
that we consider here might be expected to enhance this
change; a detailed calculation is required to estimate the
actual effect. We detail further ongoing efforts in this work in
the conclusion, Sec. VI. Throughout this paper we use
natural units where ℏ ¼ c ¼ kB ¼ 1.
In this manuscript we have provided a pedagogical

presentation of some familiar topics. This is done in the
interest of giving a clear presentation of our work and in the
hopes of making our analytical and numerical computa-
tions reproducible.

II. NEUTRINO WEAK DECOUPLING
CALCULATIONS

Neutrinos decouple from the plasma, roughly speaking,
when typical rates of the weak processes, Γw given in
Table I, fall below the Hubble rate:

Γw

H
≲ G2

FT
5

T2=mPl
≃

!
T

0.7 MeV

"
3

; ð6Þ

where GF ¼ 1.166 × 10−11 MeV−2 is the Fermi constant
and mPl ¼ 1.221 × 1022 MeV. By numerically evolving
the neutrino distributions for νe, ν̄e, νμ, ν̄μ, ντ, and ν̄τ we
find, however, that the neutrinos exchange entropy with the
plasma until a temperature of nearly 100 keV—many
Hubble times beyond the estimate in Eq. (6) (see
Fig. 9). This is in part explained by the fact that given
the large entropy of the early universe, which is carried by
both photons/electrons/positrons and neutrinos, a signifi-
cant fraction of the neutrinos have energies larger than the
temperature. This effect is enhanced by plasma particles
scattering from the neutrinos, which preferentially up-
scatter the neutrinos and distort the high-momentum tails
of the neutrino distributions. In this section, we present the
details of the numerical evaluation of the collision integrals,
the solution of the Boltzmann equation, and performance
statistics of the code, followed by details of the weak
decoupling calculations.

A. Weak interaction processes

We discuss the weak interactions relevant for neutrino
weak decoupling here and their implementation in the
collision integral C in the Boltzmann equation, Eq. (1).
Expressions for the neutral and charged current weak

interaction processes involving neutrinos, antineutrinos and
the charged leptons of the plasma are given in Table I. The
table gives the squared amplitudes hjMrj2i, where r labels
two-body processes that are important during neutrino
weak decoupling [40,41], averaged over initial spin states
and summed over final spins. The initial state particle four-
momenta in Table I are given particle numbers 1 and 2;
final states are 3 and 4. That is
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of flavor oscillation, whose subsequent effect on primordial
nucleosynthesis is difficult to estimate in a self-consistent
approach in the dynamic environment of the BBN-epoch of
the early universe, is the suppression of the νe þ n →
pþ e− rate. This suppression occurs when an electron
neutrino oscillates to either a νμ or ντ state, which do not
convert n ↔ p. A detailed, self-consistent calculation will
account for the phasings of various such mechanisms,
which may be important at the level of precision anticipated
for in the next generation of cosmological observations.
We emphasize that we couple neutrino-energy transport

self-consistently and concurrently to evaluation of the
neutron-to-proton rates and nucleosynthesis reaction net-
work. At each time step in BURST, the weak interaction
neutron-proton conversion rates (n ↔ p rates),

νe þ n ↔ pþ e−; ð3Þ

eþ þ n ↔ pþ ν̄e; ð4Þ

n ↔ pþ e− þ ν̄e; ð5Þ

are determined using the evolved, nonequilibrium νe and ν̄e
spectra. The thermodynamics of the electromagnetic
plasma is coupled to the neutrino seas to account for
heat flow between the plasma and the neutrinos. Non-
equilibrium effects generate entropy, increasing the total
entropy of the plasma and the neutrinos, through a timelike
entropy-current flux. Finally, we integrate the neutrino
occupation probabilities to determine the energy density for
calculating the Hubble expansion rate. In this way, self-
consistency within the neutrino sector is maintained over
approximately 108 Hubble times. The overall architecture
employed in BURST differs from the approaches used in
previous treatments (see Appendix A).
The nuclear reaction network employed in the current

code is based on those of Refs. [36,37] as augmented in
Ref. [38]; details are discussed in Ref. [39]. Ongoing work
is focused on incorporating into the present approach a
nuclear reaction network based on a reaction formalism that
respects unitarity.
The outline of this work is as follows. In Sec. II, we

present details of the transport code and weak-decoupling
calculations. We investigate, in Sec. III, the contributions of
the scattering processes to the out-of-equilibrium neutrino
spectra. Section IV describes the evolution of the entropy
during the weak-decoupling process. Section V discusses
primordial nucleosynthesis resulting from the self-
consistent coupling to the transport code. We conclude in
Sec. VI. Appendix A contains a summary of the calculations
of different groups. Appendixes B and C describe the
analytical derivations of the collision terms. We should
emphasize that the current manuscript represents a prelimi-
nary step toward the objective of coupling neutrino kinetics
to the nucleosynthesis reaction network. The proper treat-
ment of neutrino flavor oscillations and possible coherent

effects requires a quantum kinetic approach [25]. Flavor
oscillations have been estimated [12] to change the produc-
tion of 4He at the 20% level. The self-consistent approach
that we consider here might be expected to enhance this
change; a detailed calculation is required to estimate the
actual effect. We detail further ongoing efforts in this work in
the conclusion, Sec. VI. Throughout this paper we use
natural units where ℏ ¼ c ¼ kB ¼ 1.
In this manuscript we have provided a pedagogical

presentation of some familiar topics. This is done in the
interest of giving a clear presentation of our work and in the
hopes of making our analytical and numerical computa-
tions reproducible.

II. NEUTRINO WEAK DECOUPLING
CALCULATIONS

Neutrinos decouple from the plasma, roughly speaking,
when typical rates of the weak processes, Γw given in
Table I, fall below the Hubble rate:
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≃
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where GF ¼ 1.166 × 10−11 MeV−2 is the Fermi constant
and mPl ¼ 1.221 × 1022 MeV. By numerically evolving
the neutrino distributions for νe, ν̄e, νμ, ν̄μ, ντ, and ν̄τ we
find, however, that the neutrinos exchange entropy with the
plasma until a temperature of nearly 100 keV—many
Hubble times beyond the estimate in Eq. (6) (see
Fig. 9). This is in part explained by the fact that given
the large entropy of the early universe, which is carried by
both photons/electrons/positrons and neutrinos, a signifi-
cant fraction of the neutrinos have energies larger than the
temperature. This effect is enhanced by plasma particles
scattering from the neutrinos, which preferentially up-
scatter the neutrinos and distort the high-momentum tails
of the neutrino distributions. In this section, we present the
details of the numerical evaluation of the collision integrals,
the solution of the Boltzmann equation, and performance
statistics of the code, followed by details of the weak
decoupling calculations.

A. Weak interaction processes

We discuss the weak interactions relevant for neutrino
weak decoupling here and their implementation in the
collision integral C in the Boltzmann equation, Eq. (1).
Expressions for the neutral and charged current weak

interaction processes involving neutrinos, antineutrinos and
the charged leptons of the plasma are given in Table I. The
table gives the squared amplitudes hjMrj2i, where r labels
two-body processes that are important during neutrino
weak decoupling [40,41], averaged over initial spin states
and summed over final spins. The initial state particle four-
momenta in Table I are given particle numbers 1 and 2;
final states are 3 and 4. That is
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production, the entropy generated by weak-interaction
driven kinetic processes is larger than the entropy lost
from the neutrinos. We note that, contrary to the
order-of-magnitude estimates of Eq. (6), the process of
weak decoupling, measured as the point at which the
derivatives drop below some near-zero value, lasts until
Tcm ≃ 90–100 keV, well into the epoch of BBN.
Table III shows the initial, final, and relative changes in

the entropy for the same runs as those performed in Sec. II.
The first row (“None”), corresponds to the “standard”
cosmology without transport. The second row (“All”)
corresponds to the curves in Fig. 9. Component contribu-
tions to the collision integrals, corresponding to various r in
Table I, are given in the remaining rows. Here it is apparent
that the dominant process contributing to entropy gener-
ation are due to the annihilation processes r ¼ 10 and 11.

V. WEAK FREEZE-OUT AND
NUCLEOSYNTHESIS

In this section we examine how the charged current weak
reactions involving nucleons and the strong and electro-
magnetic nuclear reactions are affected by the evolving
neutrino and plasma components. As outlined above, the
scattering-driven nonequilibrium evolution of the neutrino
energy distribution functions through the weak decoupling
epoch is nonlinearly coupled to the plasma thermodynamic
conditions. The plasma of photons, electrons, and positrons
is maintained in thermal equilibrium by electromagnetic
interactions whose rates are much faster than the Hubble
rate for all epochs under present consideration. The rapid
fall off in the weak interactions of neutrinos with neutrons
and protons, however, result in the weak freeze-out of the
n=p ratio where chemical equilibrium is no longer main-
tained even though thermal equilibrium still obtains.
Systems where equilibrium is maintained instantaneously
are, at any given time, insensitive to the previous history of
the system. Quantities characterizing systems which are out
of equilibrium, on the other hand, can be sensitive to
previous history. In fact, since the n=p ratio and nuclear
reactions are not in chemical equilibrium, the out-of-
equilibrium neutrino energy distributions alter BBN abun-
dance yields over the no-transport case.
As discussed in Appendix A, DHS (Ref. [7]) has taken

into account effects of neutrino transport during weak
decoupling on energy density, the weak interactions and the
plasma temperature derivative. The work of DHS, which is
most similar to our present treatment, however, employs a
perturbative approach for nucleosynthesis. There, the
primordial nucleosynthesis was “postprocessed” by using
the results from DHS’s prior solution of the coupled set of
neutrino Boltzmann equations. Our treatment concurrently
solves the Boltzmann equations for the neutrino occupation
probabilities and the light nuclide abundances or mass
fractions, given by

Yi ≡ ni
nb

and Xi ≡ AiYi; ð50Þ

where for a given species i: ni is the number density,Ai is the
atomic mass number, Yi is the abundance, andXi is the mass
fraction. The quantity nb is the baryon number density. This
fully coupled, self-consistent approach results in a significant
enhancement of effects that change the light element abun-
dances from the treatments without transport or with trans-
port included perturbatively, as we detail in this section.
In both our transport and no-transport BBN calculations

we employ the value of the baryon-to-photon ratio from
Ref. [47], corresponding to ωb ¼ Ωbh2 ¼ 0.022068. This
also corresponds to the final entropy per baryon in the
plasma of spl ¼ 5.929 × 109 units of Boltzmann’s constant.
We emphasize that these are the final values of these
quantities after all transport and entropy generating reac-
tions have ceased, i.e., as measured at the CMB decoupling
epoch. A standard BBN, baseline calculation assuming
constant comoving entropy, but not including QED and
other corrections, yields the following values for the
primordial mass fraction of 4He, relative abundances of
deuterium, 3He and 7Li (with respect to hydrogen):

YðNÞ
P ≡ X4He ¼ 0.2438; ð51Þ

ðD=HÞðNÞ ≡ YD=YH ¼ 2.627 × 10−5; ð52Þ

ð3He=HÞðNÞ ¼ 1.049 × 10−5; ð53Þ

ð7Li=HÞðNÞ ¼ 4.277 × 10−10: ð54Þ

We refer to the abundances in this baseline computation as
(N). The standard BBN calculation and associated reaction
network employed here is detailed in Refs. [36,39,48]. We
emphasize that the (N) baseline computation does not
include Coulomb corrections (CC), zero-temperature radi-
ative corrections (0T), and transport-induced corrections
(Trans). As an alternative baseline we consider the inclu-
sion of Coulomb corrections (given by Eq. (5b) in
Ref. [49]) to the reactions Eqs. (3) and (5) (on page 5);
and zero-temperature radiative corrections (Eq. (2.14) in
Ref. [1]) to reactions (3), (4), and (5). See Ref. [50] for a
detailed discussion of the Coulomb corrections to BBN.
The QED corrections discussed in Sec. III C are excluded
for this baseline. The helium-4 (hereafter shortened to
helium) mass fraction and relative abundances for this
baseline are

YðQÞ
P ¼ 0.2478; ð55Þ

ðD=HÞðQÞ ¼ 2.650 × 10−5; ð56Þ

ð3He=HÞðQÞ ¼ 1.052 × 10−5; ð57Þ
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ð7Li=HÞðQÞ ¼ 4.317 × 10−10: ð58Þ

We refer to the abundances in this baseline computation
as (Q). The (Q) baseline allows us to compare to other
nucleosynthesis codes. To wit, in the (Q) baseline
we obtain for the primordial helium mass fraction
YP ¼ 0.2478, which is within ∼0.1% of the value from
the PARTHENOPE code [51] of 0.24725 [52]. Table V shows
the effect on the abundances for these cases.
We use a semi-implicit Heun’s method to integrate the

BBN nuclear reaction network [53] from t ¼ tn to t ¼ tnþ1.
To calculate the abundance derivatives we need the
abundance values themselves, Yj, and a set of thermody-
namic/transport quantities, namely T, Tcm, ϕe, ρb, and the
νe, ν̄e occupation probabilities. We integrate the RK5
method by partitioning the time interval Δt ¼ tnþ1 − tn
into six subintervals (see Ref. [43] for details on the fifth-
order Runge-Kutta method with a Cash-Karp time step).
We step through each subinterval and evolve the above set
of thermodynamic/transport quantities (and other quantities
as well) but not the Yj. We extrapolate the small nucleo-
synthesis contributions to the derivative of ϕe (from
alterations of the n=p ratio) and to the plasma-temperature
derivative (from the release of nuclear binding energy and
the n=p ratio) for each of the subintervals in the RK5
method. The baryon-to-photon ratio is small enough that
the extrapolation does not produce substantial error in
either the gross thermodynamics of the plasma or the
Boltzmann neutrino-energy transport network (see
Sec. IV). We store within memory the set of thermody-
namic/transport quantities needed for the reaction network
at two specific subintervals while integrating the RK5
method: the first subinterval (corresponding to the start of
the time interval, t ¼ tn); and the fifth subinterval (corre-
sponding to the end of the time interval, t ¼ tn þ Δt). Once
the RK5 terminates, we check for numerical convergence.
If the convergence criteria failed, we repeat the RK5
calculation (beginning at t ¼ tn) with a smaller time step.

If the convergence criteria succeeded, we accept the
thermodynamic/transport quantities at tn þ Δt ¼ tnþ1 and
proceed to integrate the nuclear reaction network with
Heun’s method to obtain only the Yj at tnþ1. Heun’s
method requires an initial evaluation at the start of the
interval and a second evaluation at the end of the interval.
We recall the set of thermodynamic/transport quantities
stored in memory to use in the integration of the nuclear
reaction network. Specifically, for the first computation we
recall TðtnÞ, TcmðtnÞ, ϕeðtnÞ, ρbðtnÞ, fνeðϵ; tnÞ, fν̄eðϵ; tnÞ,
and the current values of the abundances YjðtnÞ to calculate
a first set of abundance derivatives. This is accomplished by
utilizing the Jacobian of a linearized Boltzmann equation
for nuclear reactions and subsequently diagonalizing a
matrix (see Refs. [36] and [53] for details on this pro-
cedure). Using the time step value Δt and the first set of
abundance derivatives, we estimate the new values of the
abundances, ~Yjðtn þ ΔtÞ. At this stage in Heun’s method,
the ~Yjðtn þ ΔtÞ are only estimates of the abundances at
tn þ Δt; they are not the calculated abundances, i.e., the
Yjðtnþ1Þ. Next, we calculate a second set of abundance
derivatives again using the Jacobian of the linearized
Boltzmann equation. This new set of derivatives requires
the second set of thermodynamic/transport quantities, i.e.,
Tðtnþ1Þ, Tcmðtnþ1Þ, etc., and the previous estimates of the
abundances, namely the ~Yjðtn þ ΔtÞ. Finally, we average
the two sets of abundance derivatives and arrive at a
derivative for each nuclide. We use this derivative and
the time step to calculate the new value of the abundances
Yjðtnþ1Þ. After we integrate the nuclear reaction network
and have obtained the Yj, we proceed to the next time point
tnþ1 and repeat the process.
With the two baseline calculations in hand, we are in a

position to study the effect that weak interaction processes
and neutrino transport has on the primordial abundances
relative to these baseline cases. This comparison is done in
Tables IV and V.

TABLE IV. Process-dependent changes in the BBN abundances. For all runs ϵmax ¼ 20.0, Nbins ¼ 100, T in ¼ 8 MeV,
Tstop ¼ 15 keV, εðnet=FRSÞ ¼ 30.0. The first column gives the processes used for a given run similar to Table II. Column two is
the primordial mass fraction of 4He and column three is the relative change from the (N) baseline case with no neutrino transport, i.e. the
first row. Column four is the relative abundance of D and column five the relative change. Column six is the relative abundance of
3He and column seven the relative change. Column eight is the relative abundance of 7Li and column nine the relative change.

Processes YP δYP 105 × D=H δðD=HÞ 105 × 3He=H δð3He=HÞ 1010 × 7Li=H δð7Li=HÞ
None 0.2438 0 2.627 0 1.049 0 4.277 0
All 0.2440 4.636 × 10−4 2.636 3.686 × 10−3 1.050 1.209 × 10−3 4.260 −3.916 × 10−3

10, 11 0.2439 2.124 × 10−4 2.635 3.202 × 10−3 1.050 1.048 × 10−3 4.262 −3.650 × 10−3

1, 2, 10, 11 0.2439 1.515 × 10−4 2.635 3.155 × 10−3 1.050 1.032 × 10−3 4.261 −3.672 × 10−3

1, 2, 3, 4, 5, 10, 11 0.2439 2.415 × 10−4 2.635 3.148 × 10−3 1.050 1.029 × 10−3 4.262 −3.543 × 10−3

6, 7, 8, 9 0.2440 6.730 × 10−4 2.629 1.002 × 10−3 1.049 3.348 × 10−4 4.276 −3.536 × 10−4

1, 2, 6, 7, 8, 9 0.2440 5.455 × 10−4 2.629 9.034 × 10−4 1.049 3.001 × 10−4 4.275 −3.972 × 10−4

1, 2, 3, 4, 5, 6, 7, 8, 9 0.2440 5.533 × 10−4 2.629 8.981 × 10−4 1.049 2.981 × 10−4 4.276 −3.797 × 10−4
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ð7Li=HÞðQÞ ¼ 4.317 × 10−10: ð58Þ

We refer to the abundances in this baseline computation
as (Q). The (Q) baseline allows us to compare to other
nucleosynthesis codes. To wit, in the (Q) baseline
we obtain for the primordial helium mass fraction
YP ¼ 0.2478, which is within ∼0.1% of the value from
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as well) but not the Yj. We extrapolate the small nucleo-
synthesis contributions to the derivative of ϕe (from
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and the current values of the abundances YjðtnÞ to calculate
a first set of abundance derivatives. This is accomplished by
utilizing the Jacobian of a linearized Boltzmann equation
for nuclear reactions and subsequently diagonalizing a
matrix (see Refs. [36] and [53] for details on this pro-
cedure). Using the time step value Δt and the first set of
abundance derivatives, we estimate the new values of the
abundances, ~Yjðtn þ ΔtÞ. At this stage in Heun’s method,
the ~Yjðtn þ ΔtÞ are only estimates of the abundances at
tn þ Δt; they are not the calculated abundances, i.e., the
Yjðtnþ1Þ. Next, we calculate a second set of abundance
derivatives again using the Jacobian of the linearized
Boltzmann equation. This new set of derivatives requires
the second set of thermodynamic/transport quantities, i.e.,
Tðtnþ1Þ, Tcmðtnþ1Þ, etc., and the previous estimates of the
abundances, namely the ~Yjðtn þ ΔtÞ. Finally, we average
the two sets of abundance derivatives and arrive at a
derivative for each nuclide. We use this derivative and
the time step to calculate the new value of the abundances
Yjðtnþ1Þ. After we integrate the nuclear reaction network
and have obtained the Yj, we proceed to the next time point
tnþ1 and repeat the process.
With the two baseline calculations in hand, we are in a

position to study the effect that weak interaction processes
and neutrino transport has on the primordial abundances
relative to these baseline cases. This comparison is done in
Tables IV and V.

TABLE IV. Process-dependent changes in the BBN abundances. For all runs ϵmax ¼ 20.0, Nbins ¼ 100, T in ¼ 8 MeV,
Tstop ¼ 15 keV, εðnet=FRSÞ ¼ 30.0. The first column gives the processes used for a given run similar to Table II. Column two is
the primordial mass fraction of 4He and column three is the relative change from the (N) baseline case with no neutrino transport, i.e. the
first row. Column four is the relative abundance of D and column five the relative change. Column six is the relative abundance of
3He and column seven the relative change. Column eight is the relative abundance of 7Li and column nine the relative change.

Processes YP δYP 105 × D=H δðD=HÞ 105 × 3He=H δð3He=HÞ 1010 × 7Li=H δð7Li=HÞ
None 0.2438 0 2.627 0 1.049 0 4.277 0
All 0.2440 4.636 × 10−4 2.636 3.686 × 10−3 1.050 1.209 × 10−3 4.260 −3.916 × 10−3

10, 11 0.2439 2.124 × 10−4 2.635 3.202 × 10−3 1.050 1.048 × 10−3 4.262 −3.650 × 10−3

1, 2, 10, 11 0.2439 1.515 × 10−4 2.635 3.155 × 10−3 1.050 1.032 × 10−3 4.261 −3.672 × 10−3

1, 2, 3, 4, 5, 10, 11 0.2439 2.415 × 10−4 2.635 3.148 × 10−3 1.050 1.029 × 10−3 4.262 −3.543 × 10−3

6, 7, 8, 9 0.2440 6.730 × 10−4 2.629 1.002 × 10−3 1.049 3.348 × 10−4 4.276 −3.536 × 10−4

1, 2, 6, 7, 8, 9 0.2440 5.455 × 10−4 2.629 9.034 × 10−4 1.049 3.001 × 10−4 4.275 −3.972 × 10−4
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¨  Effect of transport mechanisms 

1þ 2 ↔ 3þ 4; ð7Þ

where particle 1 is always a neutrino (or antineutrino). We
label neutrino four-momenta as Pi and charged lepton four-
momenta as Qi.
The hjMrj2i are different for electron-flavor neutrinos

compared to μ or τ-flavor neutrinos due to the charged-
current interaction, which alters the factor 2 sin2 θW − 1 to
2 sin2 θW þ 1.1 The Weinberg angle θW is taken as
sin2 θW ≈ 0.23. At the energy scales of interest here the
μ and τ neutrino species have the same interactions.

1. Collision integrals

Given the amplitudes Mr of Table I, we may calculate
the collision integral of Eq. (1):

CðrÞ
ν1 ½fj% ¼

1

2E1

Z
d3p2

ð2πÞ32E2

d3p3

ð2πÞ32E3

d3p4

ð2πÞ32E4

× ð2πÞ4δð4ÞðP1 þ P2 − P3 − P4ÞSrhjMrj2i
× Frðp1; p2; p3; p4Þ; ð8Þ

where Sr is the symmetrization factor for identical particles,
and

Frðp1; p2; p3; p4Þ ¼ ½1 − f1%½1 − f2%f3f4
− f1f2½1 − f3%½1 − f4%; ð9Þ

¼ FðþÞ
r − Fð−Þ

r : ð10Þ

Here we have suppressed time dependence and written the
occupation probability functions in abbreviated form. For
example, f1 for r ¼ 1 would read fν1ðp1; tÞ. The quantities
Fð'Þ
r , corresponding to the first and second lines of Eq. (9),

give the probability for scattering into ðþÞ or out of ð−Þ the
phase space volume for particle “1”; they include Pauli
blocking factors ∼ð1 − fiÞ. The phase space measure for
particles 2, 3, and 4, and the arguments of the four-
momentum conserving delta function δð4ÞðP1 þ P2 − P3 −
P4Þ and of Fr are written schematically with the depend-
ence of pi on r, which can either be four-momentum Pi or
Qi, suppressed. The factor ð2E1Þ−1 ensures that an integral
over d3p1=ð2πÞ3 of the collision integral for f1 vanishes in
number-conserving processes; this is discussed in more
detail in Sec. II C. All amplitudes in Table I are proportional
to GF, the Fermi coupling constant. The square of the
Fermi coupling and a factor of T5

cm may be taken outside of
the collision integral [Eq. (8)] to give a dimensionless
expression with integration variable ϵ, the binning param-
eter for the occupation probabilities. The product G2

FT
5
cm

has dimensions of energy or inverse time, appropriate to
that for a rate. The expression for the collision integral
appearing in Eq. (1) is

Cνi ½fj% ¼
X

r

CðrÞ
νi ½fj% ð11Þ

for processes r that include νi.

TABLE I. Weak interaction processes relevant for neutrino weak decoupling. The left column labels the scattering, production, and
annihilation processes in the middle column by an index r. The right column gives the spin-averaged and summed square of the matrix
element Mr for process r with the Fermi constant and symmetry factor Sr divided out. Indices i and j in the middle column for
processes r ¼ 1;…; 5, which describe neutrino and antineutrino scattering, are distinct. Processes with an antineutrino scattering on a
charged lepton, correspond to the parity-conjugate reactions of r ¼ 6;…; 9. Since they have identical matrix elements to these they are
not shown in the table, although their effect is explicitly accounted for in antineutrino energy transport. Sr is unity for all processes
except r ¼ 1, where S1 ¼ 1=2.

r Process G−2
F SrhjMrj2i

1 νi þ νi ↔ νi þ νi 26ðP1 · P2ÞðP3 · P4Þ
2 νi þ νj ↔ νi þ νj 25ðP1 · P2ÞðP3 · P4Þ
3 νi þ ν̄i ↔ νi þ ν̄i 27ðP1 · P4ÞðP2 · P3Þ
4 νi þ ν̄j ↔ νi þ ν̄j 25ðP1 · P4ÞðP2 · P3Þ
5 νi þ ν̄i ↔ νj þ ν̄j 25ðP1 · P4ÞðP2 · P3Þ
6 νe þ e− ↔ e− þ νe 25½ð2sin2θW þ1Þ2ðP1 ·Q2ÞðQ3 ·P4Þþ4sin4θWðP1 ·Q3ÞðQ2 ·P4Þ−2sin2θWð2sin2θW þ1Þm2

eðP1 ·P4Þ%
7 νμðτÞ þ e− ↔ e− þ νμðτÞ 25½ð2sin2θW −1Þ2ðP1 ·Q2ÞðQ3 ·P4Þþ4sin4θWðP1 ·Q3ÞðQ2 ·P4Þ−2sin2θWð2sin2θW −1Þm2

eðP1 ·P4Þ%
8 νe þ eþ ↔ eþ þ νe 25½ð2sin2θW þ1Þ2ðP1 ·Q3ÞðQ2 ·P4Þþ4sin4θWðP1 ·Q2ÞðQ3 ·P4Þ−2sin2θWð2sin2θW þ1Þm2

eðP1 ·P4Þ%
9 νμðτÞ þ eþ ↔ eþ þ νμðτÞ 25½ð2sin2θW −1Þ2ðP1 ·Q3ÞðQ2 ·P4Þþ4sin4θWðP1 ·Q2ÞðQ3 ·P4Þ−2sin2θWð2sin2θW −1Þm2

eðP1 ·P4Þ%
10 νe þ ν̄e ↔ e− þ eþ 25½ð2sin2θW þ1Þ2ðP1 ·Q4ÞðP2 ·Q3Þþ4sin4θWðP1 ·Q3ÞðP2 ·Q4Þþ2sin2θWð2sin2θW þ1Þm2

eðP1 ·P2Þ%
11 νμðτÞ þ ν̄μðτÞ ↔ e− þ eþ 25½ð2sin2θW −1Þ2ðP1 ·Q4ÞðP2 ·Q3Þþ4sin4θWðP1 ·Q3ÞðP2 ·Q4Þþ2sin2θWð2sin2θW −1Þm2

eðP1 ·P2Þ%

1We note some typographical differences between Table I and
Tables I and II in DHS. Row 10 here corresponds to Row 6 of
Table I in DHS. While the expression G−2

F S6hjM6j2i is the same
as that of DHS, the third particle [see Eq. (7)] in our row 10 is an
electron, and the third particle of row 6 in Table I of DHS is a
positron, which should result in a different expression. This
discrepancy also occurs between our row 11 and row 6 of Table II
in DHS. Our expression for r ¼ 10, however, agrees with that of
row 7 of Table I in Ref. [6].
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In both Tables IVand V we show the change in a nuclide,
δY, relative to the (N) baseline case as

δY ≡ YðprocÞ − YðNÞ

YðNÞ ; ð59Þ

where YðprocÞ is the quantity of interest for the specific set of
processes. YðNÞ is the quantity of interest for the case of no
transport and no higher-order corrections to the n ↔ p
rates. i.e. our (N) baseline value labeled “None” in row 1 of
Tables IV and V.
Table IV gives the primordial mass fractions or relative

abundances when various processes in Table I are included
or neglected. This table shows that the transport calcula-
tions produce a 5 × 10−4 increase in the expected 4He yield
compared to YðNÞ

P . Table V gives corresponding changes
between the (N) baseline case and the cases with Coulomb,
zero-temperature radiative, or transport-induced correc-
tions. We compare the helium yield in row 4 [the (Q)
baseline] with the helium yield in the last row (labeled CC,
0T, Trans). The no-transport value in this baseline case is
0.2478, as mentioned above, while the same weak rate
physics but with transport gives 0.2479, a roughly 3 × 10−4

increase in the helium yield. This is similar to the
comparison above with the cases without Coulomb and
zero-temperature radiative corrections, showing that the
transport-induced alterations in light element abundance
yields are somewhat robust to how this set of corrections to
the n ↔ p rates is treated. The increase in YP is in rough
agreement with DHS irrespective of the baseline. Our
hypothesis was that a high-energy enhancement of the
νe occupation probability would lead to a smaller n=p ratio
and subsequent decrease in YP. We have found the opposite
behavior. Comparing the cases with and without transport,
we find two competing processes affecting the helium
abundance. With transport there is an enhanced population
of νe and ν̄e relative to FD equilibrium, and this results
in an enhanced neutron destruction in the channel
νe þ n → pþ e−. (The ν̄e þ p → nþ eþ channel is hin-
dered by a threshold energy.) A decrease in the neutron
number leads to a decrease in helium. Second, a larger
energy density in the neutrino sector yields a faster

expansion rate, and this means a larger neutron number
during weak freeze-out, which would produce a higher
helium yield. Tables IV and V show that the net change in
helium with these two effects is nearly a wash, with the
faster expansion rate being the more dominant process and
a very small increase in helium (0.2478 to 0.2479 in
Table V).
Wehave investigatedour theoryby the followingnumerical

test. We run our code with all of the neutrino transport
processes activated to allow the neutrino occupation proba-
bilities to go out of FD equilibrium. We follow the flow of
entropy out of the plasma and calculate the Hubble expansion
rate,butwedonotuse themodifiedoccupationprobabilities in
calculating theneutron-to-proton rates. Instead,wesimplyuse
FD occupation probabilities when calculating the weak
interaction rates. This program ensures that we have the same
thermodynamics and phasing of T with Tcm, and therefore
tests how effective the high-energy tail of the νe distribution is
at lowering the helium abundance. The results of the test are a
slight increase of helium to 0.2480, over the 0.2479 value in
row 6 of table V. The increase in the νe occupation probability
has averyslight overall leverageon theheliumabundance.For
this test, thechanges indeuterium,helium-3, and lithium-7are
even smaller.
Neutrino transport alters the deuterium abundance com-

puted from the baselines in a significant and interesting
way. Table IV (second row) shows an increase of about
0.4% in the predicted BBN D/H value relative to the (N)
baseline. Table V gives the corresponding changes relative
to our (Q) baseline case, and again shows a comparable
fractional increase in the deuterium yield. This is a change
which is comparable to the level of BBN nuclear physics
input uncertainties [i.e., in the Dðp; γÞ3He cross sections]
[54] and these might be improved upon by ab initio many-
body calculations [55]. Moreover, our calculated increase is
not far from the speculated precision in the primordial D/H
abundance attainable with thirty-meter-class telescopes and
observations of isotope-shifted Lyman series hydrogen
absorption lines in nearly pristine hydrogen clouds seen
along lines of sight to high-redshift quasars [56–59].
Tables IV and V also show the changes in the lithium-7

yield with and without transport. The changes in this case

TABLE V. Changes in primordial abundances in BBN for Coulomb and radiative corrections. The first column gives the processes
used for a given run. Rows correspond to various corrections as “CC” for Coulomb corrections; “0T” for zero-temperature radiative
corrections; “Trans” for neutrino transport calculation with computational parameters as given in Table IV. The notation for the relative
changes is the same as in Table IV. Row 4 is our (Q) baseline.

Processes YP δYP 105 × D=H δðD=HÞ 105 × 3He=H δð3He=HÞ 1010 × 7Li=H δð7Li=HÞ
None 0.2438 0 2.627 0 1.049 0 4.277 0
CC 0.2474 1.463 × 10−2 2.647 7.898 × 10−3 1.052 2.737 × 10−3 4.317 9.344 × 10−3

0T 0.2442 1.454 × 10−3 2.629 7.816 × 10−4 1.049 0.0 4.281 9.365 × 10−4

CC, 0T 0.2478 1.613 × 10−2 2.650 8.719 × 10−3 1.052 3.021 × 10−3 4.321 1.030 × 10−2

Trans 0.2440 4.636 × 10−4 2.636 3.686 × 10−3 1.050 1.209 × 10−3 4.260 −3.916 × 10−3

CC, 0T, Trans 0.2479 1.644 × 10−2 2.659 1.236 × 10−2 1.053 4.209 × 10−3 4.304 6.231 × 10−3
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¨  Non-eq. FT:  
¤  Wigner transform ν2-pt function 

¤  Derivative/loop expansion (x,k); small: 

¤  Assume homogeneity & isotropy 

¤  Resulting terms: vacuum, lepton asymmteric (L) and symmetric (E) “coherent”/”self”, collision 

¤  Folklore: “coherent: collective; collision: incoherent” --- STAY TUNED. 

 

1 “Standard” QKEs

Let us start by writing down the “standard” QKEs in the EU as found for example in Ref. [1].
The original derivation was done in Refs. [2], [?], [3]. The version that everyone has used for
numerical studies uses a truncation of the inelastic collision term discussed in Ref. [4] (see
also [5, 6]).

1.1 Preliminaries

In isotropic and homogeneous conditions (i.e. neglecting spin degrees of freedom), an ensemble
of mixing neutrinos with nf flavors is described by an nf ⇥ nf density matrix, which we will
denote by f(p, t). Here p ⌘ |~p| is the absolute value of the neutrino momentum, while t is the
time variable. In the two-flavor case (for definiteness e� µ), the density matrix reads

f =

 

fee feµ
fµe fµµ

!

(1)

with fµe = f ⇤
eµ. The diagonal entries are the “populations” of each flavor and the o↵-diagonal

densities describe coherence between the flavor states in the ensemble. The anti-neutrino
density matrix is denoted by f̄(p, t). We normalize the density matrix so that the number
density of neutrinos of flavor ↵ is given by:

n↵(t) =

Z

d
3

p f↵↵(p, t) d
3

p ⌘ d3p

(2⇡)3
(2)

Note: the normalization used in Ref. [1] di↵ers from ours (they define ⇢(p, t) ⌘ f(p, t)/fFD(p)
where fFD(p) = 1/(ep/T + 1)).

Taking into account the expansion of the universe, the time evolution is represented by the
di↵erential operator

dt ⌘
@

@t
�H p

@

@p
H =

ȧ

a
(3)

where H is the Hubble expansion rate and a(t) is the scale factor of the FRW metric ds2 =
dt2 � a2(t)(dx2 + dy2 + dz2).

Finally, we assume that in the temperature range 0.1 MeV < T < 100 MeV the only
relevant degrees of freedom (besides neutrinos) are e±, p, n, and trace abundances of µ±. For
all the species in the thermal bath (except for neutrinos) we assume thermal distributions.
This is based on the fact that these species have strong and/or electromagnetic interactions
with rates fast enough to keep them in equilibrium.

1.2 The equations - 1

Working in the flavor (or interaction) basis, in compact matrix notation the QKEs for neutrinos
and antineutrinos read:

idtf(p, t) =

"

⌦(p) +
p
2GF
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L+ L̃
⌘

� 8
p
2GFp

3m2

W
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E + cos2 ✓W Ẽ
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, f(p, t)

#

+ iC[p, f ] (4)

1idtf̄(p, t) =

"

�⌦(p) +
p
2GF

⇣

L+ L̃
⌘

+
8
p
2GFp

3m2

W

⇣

E + cos2 ✓W Ẽ
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#
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The RHS of the QKEs involves the following matrices:
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Z
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q q
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f(q, t) + f̄(q, t)
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where g↵ (ḡ↵) denotes the charged lepton (antilepton) distribution (which we will take Fermi-
Dirac). In practice, in the regime we are interested in, only electrons and positrons contribute.
For the collision term we take the form [4, 6, 7]:

C[p, f ] = ��(p) C̃[g, f ] C̄[p, f̄ ] = ��(p) C̃[g, f̄ ] , (12)

with

C̃[g, f ] =

0

B

@

g2e (fee(p, t)� f eq

ee (p, t))
(ge�gµ)2

2

feµ(p, t)

(ge�gµ)2
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which can be easily generalized to the three-flavor case. The thermally averaged collision rate
is given by:

�(p) = G2

F T 5

p

hpi = G2

F T 4

p

3.15
hpi = 7⇡4T

180⇣(3)
' 3.15T , (14)

and the couplings ge,µ,⌧ can be estimated using the Standard Model weak interactions (for
sterile neutrinos gs = 0).

The above form of the collision term follows from the discussion in Ref. [?]. It agrees with
the result of Ref. [4] in the active-sterile case (gµ = 0). The values of ge,µ,⌧ need to be worked
out and compared with the ones in [1].

Note: the QKEs for ⇢(p, t) ⌘ f(p, t)/fFD(p) (following the definition of Ref. [1]) are simply
related to the ones in Eq. (118). Since dt(p/T ) = 0, the factor of fFD(p/T ) “goes through”.
So the equations for ⇢ have the same form as above, except that we have to include a factor
of fFD(q/T ) in the definition of L̃ and Ẽ (non-linear term in the neutrino density matrix).
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where g↵ (ḡ↵) denotes the charged lepton (antilepton) distribution (which we will take Fermi-
Dirac). In practice, in the regime we are interested in, only electrons and positrons contribute.
For the collision term we take the form [4, 6, 7]:

C[p, f ] = ��(p) C̃[g, f ] C̄[p, f̄ ] = ��(p) C̃[g, f̄ ] , (12)

with

C̃[g, f ] =

0

B

@

g2e (fee(p, t)� f eq

ee (p, t))
(ge�gµ)2

2

feµ(p, t)

(ge�gµ)2

2

fµe(p, t) g2µ
�

fµµ(p, t)� f eq

µµ(p, t)
�

1

C

A

, (13)

which can be easily generalized to the three-flavor case. The thermally averaged collision rate
is given by:

�(p) = G2

F T 5

p

hpi = G2

F T 4

p

3.15
hpi = 7⇡4T

180⇣(3)
' 3.15T , (14)

and the couplings ge,µ,⌧ can be estimated using the Standard Model weak interactions (for
sterile neutrinos gs = 0).

The above form of the collision term follows from the discussion in Ref. [?]. It agrees with
the result of Ref. [4] in the active-sterile case (gµ = 0). The values of ge,µ,⌧ need to be worked
out and compared with the ones in [1].

Note: the QKEs for ⇢(p, t) ⌘ f(p, t)/fFD(p) (following the definition of Ref. [1]) are simply
related to the ones in Eq. (118). Since dt(p/T ) = 0, the factor of fFD(p/T ) “goes through”.
So the equations for ⇢ have the same form as above, except that we have to include a factor
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We present a formulation of the quantum kinetic equations (QKEs), which govern the evolution of
neutrino flavor at high density and temperature. Here, the structure of the QKEs is derived from the ground
up, using fundamental neutrino interactions and quantum field theory. We show that the resulting QKEs
describe coherent flavor evolution with an effective mass when inelastic scattering is negligible. The QKEs
also contain a collision term. This term can reduce to the collision term in the Boltzmann equation when
scattering is dominant and the neutrino effective masses and density matrices become diagonal in the
interaction basis. We also find that the QKEs include equations of motion for a new dynamical quantity
related to neutrino spin. This quantity decouples from the equations of motion for the density matrices at
low densities or in isotropic conditions. However, the spin equations of motion allow for the possibility of
coherent transformation between neutrinos and antineutrinos at high densities and in the presence of
anisotropy. Although the requisite conditions for this exist in the core collapse supernova and compact
object merger environments, it is likely that only a self-consistent incorporation of the QKEs in a
sufficiently realistic model could establish whether or not significant neutrino-antineutrino conversion
occurs.
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I. INTRODUCTION

In this paper we address the difficult problem of how
neutrino flavor evolves in a general medium. The stakes
are high because neutrino weak interactions with matter,
dictated in part by the neutrino flavor states, may lie at the
heart of our understanding of neutrino-affected astrophysi-
cal environments, and these can be important sites for the
origin of the elements.
This paper represents a first step toward the derivation of

practicable generalized kinetic equations, useful in actual
simulations of neutrino propagation in anisotropic media, in
any density regime. Here we set up the formalism, identify
the degrees of freedom needed to describe the neutrino
ensemble (these include both flavor and spin), and derive the
correct structure of the quantum kinetic equations (QKEs),
including coherent evolution and a collision term accounting
for inelastic scattering. Our final results, summarized in
Eq. (163), are somewhat formal, since self-energies entering
into the collision term on the right-hand side are not fully
calculated. Nonetheless, all the medium-induced potentials
appearing on the left-hand side of Eq. (163) are computed in
Sec. VI A, so this paper provides a complete description of
coherent spin and flavor evolution in the absence of
collisions. We will complete our program in a future paper,
devoted to a detailed analysis of the collision term.
In this work, we have sought a well-posed prescription

for treating general neutrino flavor evolution, one that can
describe how neutrinos propagate and possibly change their
flavors in environments ranging from low density regimes,
where quantum mechanical phases are important and the

evolution is Schrödinger-like, to very high temperature or
very high matter density environments, where phases are
unimportant and the propagation/evolution is governed by
the Boltzmann equation, and to all conditions between
these limits. As a result, interaction-induced decoherence,
an historically thorny issue in relativistic and nonrelativistic
quantum systems [1–12], must be addressed directly and
self-consistently.
The approach we take differs from previous treatments.

Those studies examined neutrino or general fermion flavor
conversion in both the active-active channel [13–23] and in
the active-sterile channel [24–39], with a number of different
approaches. Here we follow the general prescription used in
Refs. [40,41] for bosons, but adapted and extended appro-
priately for fermions. In this development, we start from
the most fundamental considerations of quantum field theory
and then build QKEs, which describe neutrino flavor
evolution.
In hot and dense environments in astrophysics, like those

associated with the early Universe, core collapse supernovae,
and compact object mergers, neutrinos may carry a signifi-
cant fraction of the energy and entropy. The way these
particles interact with and communicate with the medium is
through theweak interaction. As a consequence, ascertaining
the flavor states (weak interaction states) of the neutrino
fields is these environments can be a key part of under-
standing, for example, how neutrinos set the neutron-to-
proton ratio [42] and deposit energy in supernovae [43–46],
or whether neutrinos decouple in mass or in flavor states in
the very early Universe [47,48].
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F _α
_βðx; kÞ ¼ −2πδðk2Þ 1

2
ik½μðx̂1 þ ix̂2Þν&ðSRμνÞ _α _β

× ðθðk0Þϕ†ð~kÞ þ θð−k0Þϕ⋆ð−~kÞÞ: (45)

We now turn to the spectral function. Unlike the
statistical function, in free field theory the spectral function
is completely determined by the anticommutation relations
between creation and annihilation operators. Thus, the only
nonzero components of the spectral function are

ρα _β;IJðx; kÞ ¼ 2iπδðk2Þsignðk0Þkμσμα_βδIJ (46)

ρ _αβ
IJ ðx; kÞ ¼ 2iπδðk2Þsignðk0Þkμσ̄μ _αβδIJ: (47)

C. Wigner-transformed equations of motion
for the statistical function

Having determined the physical content of the statistical
function, we return to the Wigner transform of Eqs. (26)
and (27). The full Wigner transformed expressions contain
gradient expansions, which are infinite series of derivatives
with respect to x and k. We truncate these infinite series by
expanding in a small parameter ϵ.
In our expansion, we make use of the fact that, in the

regime we are considering, neutrino masses and interaction
potentials are small compared to the neutrino energy. Also,
we expect the variation of physical quantities with respect
to the average coordinate x to be slow compared to the
inverse neutrino de Broglie frequency. These considera-
tions lead us to introduce the power counting

∂x;M;Σ
E

¼ OðϵÞ
Πρ;ΠF

E
¼ Oðϵ2Þ; (48)

where E is the neutrino energy. The contributions to self-
energy Πρ and ΠF are Oðϵ2Þ because they appear only at
two-loop order in the Feynman diagram expansion, while
Σ appears at one-loop order.
This power counting includes the standard gradient

expansion (see, for example, Refs. [40,41,70]). However,
our approach is specialized to the ultrarelativistic neutrinos
that are relevant for supernova and compact object merger
environments. Moreover, since this work involves neutri-
nos having energies far below the electroweak scale, the
interactions are always weak.
We keep terms to Oðϵ2Þ, since this allows us to include

terms involving Πρ and ΠF, which describe inelastic and
nonforward scattering of neutrinos. To Oðϵ2Þ, the Wigner
transformed equations for F are

!
1

2
i∂ þ k

"
Fðx; kÞ − ðM þ ΣðxÞÞFðk; xÞ

þ 1

2
ið∂μ

xΣðxÞÞð∂k
μFðx; kÞÞ

¼ −
1

2
iðΠþðx; kÞG−ðx; kÞ − Π−ðx; kÞGþðx; kÞÞ (49)

and its Hermitian conjugate. Here, ∂k
μ ≡ ∂

∂kμ. We have made
the right-hand side of the equation more compact by
introducing the notation

G' ≡ −
1

2
iρ' F

Π' ≡ −
1

2
iΠρ ' ΠF: (50)

We will use Eq. (49) and its Hermitian conjugate as the
starting point for deriving the equations of motion for the
neutrino density matrices.

V. DERIVATION OF QUANTUM KINETIC
EQUATIONS

A. Outline of the derivation and some preliminaries

Equation (49) has a complicated structure, containing the
kinetic equations as well as algebraic constraints relating
various components ofF to each other. To derive the quantum
kinetic equations, we systematically expand Eq. (49) in the
separation of scales, using the power counting defined
in Eq. (48).
We expect the statistical function F to have an Oð1Þ

piece of the form given by Eqs. (39) and (40) and (44) and
(45), plus a small correction due to nonzero interactions and
neutrino masses. This correction will be OðϵÞ, while our
kinetic equations will be constructed to Oðϵ2Þ. Thus, the
OðϵÞ correction to F will enter into the kinetic equations
and must be calculated.
Our strategy is to first expand Eq. (49) to OðϵÞ and use

this to find the first-order shift in F due to the mass and
interactions. Then, we will insert the OðϵÞ expression for F
back into Eq. (49), expand to Oðϵ2Þ, and extract the
equations of motion for the density matrices and spin
coherence densities.
We will show, in a subsequent section, that Σ corre-

sponds to the matter and neutrino self-interaction potential
arising from coherent forward scattering and has the form

Σ ¼
!

δΣS ΣL · σ

ΣR · σ̄ δΣ†
S

"
; (51)

where ΣL and ΣR are Hermitian, and, for Majorana
fermions, trivially related to each other. ΣL=R ¼ OðϵÞ
and δΣS ¼ Oðϵ2Þ.
To Oðϵ2Þ, the equations of motion for the statistical

function can be written as

ΩF ¼ −
1

2
iðΠþG− − Π−GþÞ (52)

and the Hermitian conjugate. The operator Ω has the
following structure:
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F _α
_βðx; kÞ ¼ −2πδðk2Þ 1

2
ik½μðx̂1 þ ix̂2Þν&ðSRμνÞ _α _β

× ðθðk0Þϕ†ð~kÞ þ θð−k0Þϕ⋆ð−~kÞÞ: (45)

We now turn to the spectral function. Unlike the
statistical function, in free field theory the spectral function
is completely determined by the anticommutation relations
between creation and annihilation operators. Thus, the only
nonzero components of the spectral function are

ρα _β;IJðx; kÞ ¼ 2iπδðk2Þsignðk0Þkμσμα_βδIJ (46)

ρ _αβ
IJ ðx; kÞ ¼ 2iπδðk2Þsignðk0Þkμσ̄μ _αβδIJ: (47)

C. Wigner-transformed equations of motion
for the statistical function

Having determined the physical content of the statistical
function, we return to the Wigner transform of Eqs. (26)
and (27). The full Wigner transformed expressions contain
gradient expansions, which are infinite series of derivatives
with respect to x and k. We truncate these infinite series by
expanding in a small parameter ϵ.
In our expansion, we make use of the fact that, in the

regime we are considering, neutrino masses and interaction
potentials are small compared to the neutrino energy. Also,
we expect the variation of physical quantities with respect
to the average coordinate x to be slow compared to the
inverse neutrino de Broglie frequency. These considera-
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∂x;M;Σ
E

¼ OðϵÞ
Πρ;ΠF

E
¼ Oðϵ2Þ; (48)

where E is the neutrino energy. The contributions to self-
energy Πρ and ΠF are Oðϵ2Þ because they appear only at
two-loop order in the Feynman diagram expansion, while
Σ appears at one-loop order.
This power counting includes the standard gradient

expansion (see, for example, Refs. [40,41,70]). However,
our approach is specialized to the ultrarelativistic neutrinos
that are relevant for supernova and compact object merger
environments. Moreover, since this work involves neutri-
nos having energies far below the electroweak scale, the
interactions are always weak.
We keep terms to Oðϵ2Þ, since this allows us to include

terms involving Πρ and ΠF, which describe inelastic and
nonforward scattering of neutrinos. To Oðϵ2Þ, the Wigner
transformed equations for F are

!
1

2
i∂ þ k

"
Fðx; kÞ − ðM þ ΣðxÞÞFðk; xÞ

þ 1

2
ið∂μ

xΣðxÞÞð∂k
μFðx; kÞÞ

¼ −
1

2
iðΠþðx; kÞG−ðx; kÞ − Π−ðx; kÞGþðx; kÞÞ (49)

and its Hermitian conjugate. Here, ∂k
μ ≡ ∂

∂kμ. We have made
the right-hand side of the equation more compact by
introducing the notation

G' ≡ −
1

2
iρ' F

Π' ≡ −
1

2
iΠρ ' ΠF: (50)

We will use Eq. (49) and its Hermitian conjugate as the
starting point for deriving the equations of motion for the
neutrino density matrices.

V. DERIVATION OF QUANTUM KINETIC
EQUATIONS

A. Outline of the derivation and some preliminaries

Equation (49) has a complicated structure, containing the
kinetic equations as well as algebraic constraints relating
various components ofF to each other. To derive the quantum
kinetic equations, we systematically expand Eq. (49) in the
separation of scales, using the power counting defined
in Eq. (48).
We expect the statistical function F to have an Oð1Þ

piece of the form given by Eqs. (39) and (40) and (44) and
(45), plus a small correction due to nonzero interactions and
neutrino masses. This correction will be OðϵÞ, while our
kinetic equations will be constructed to Oðϵ2Þ. Thus, the
OðϵÞ correction to F will enter into the kinetic equations
and must be calculated.
Our strategy is to first expand Eq. (49) to OðϵÞ and use

this to find the first-order shift in F due to the mass and
interactions. Then, we will insert the OðϵÞ expression for F
back into Eq. (49), expand to Oðϵ2Þ, and extract the
equations of motion for the density matrices and spin
coherence densities.
We will show, in a subsequent section, that Σ corre-

sponds to the matter and neutrino self-interaction potential
arising from coherent forward scattering and has the form

Σ ¼
!

δΣS ΣL · σ

ΣR · σ̄ δΣ†
S

"
; (51)

where ΣL and ΣR are Hermitian, and, for Majorana
fermions, trivially related to each other. ΣL=R ¼ OðϵÞ
and δΣS ¼ Oðϵ2Þ.
To Oðϵ2Þ, the equations of motion for the statistical

function can be written as

ΩF ¼ −
1

2
iðΠþG− − Π−GþÞ (52)

and the Hermitian conjugate. The operator Ω has the
following structure:
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Whether the σ̄ or the σ version of the vertex is used
depends on the two-component index structure of the
diagram. The requirement that spinor indices be con-
tracted in the usual order of matrix multiplication unam-
biguously determines which form of the vertex appears
in the expression.
Next, we write down the Feynman rules for the propa-

gators. In this paper we will be calculating quantities
derived from the two-particle irreducible (2PI) effective
action. In this formalism, fermion lines represent the
full expressions for neutrino and charged lepton two-point
functions; these two-point functions are, in general,
dynamical quantities that depend on particle densities
and interactions. They are not just the vacuum propagators.
In position space, we will write the general form of the
neutrino two-point functions as

(10)

The two-point functions are defined as time-ordered
expectation values of spinor field bilinears. Thus, for
example, Gα _α

ν;IJðx; yÞ ¼ hTPðψα
I ðxÞψ

† _α
J ðyÞÞi and similarly

for the other components of G. Here, TP is the time
ordering operator along a specific path. As we explain
below, we will use the closed time path (CTP) contour.
Since we are dealing with out-of-equilibrium, nonvacuum
states described by a nontrivial density operator, the
brackets, hi, denote an ensemble average rather than a
vacuum expectation value.
Note that in two-component spinor notation the

arrows on fermion propagators do not denote the flow
of momentum or any conserved current but rather simply
indicate whether the two-component spinor index asso-
ciated with the arrow is dotted or undotted. This is
illustrated in the above equations for the two-point
functions. For example, it can be seen that “clashing
arrows,” where the arrows point toward each other,
correspond to two-point functions with right-handed
spinor indices, while diverging arrows go with left-handed
spinor indices, etc.
As described below, the two-point function contains both

the vacuum propagator and the particle density matrix. The
density matrix encodes the particle occupation numbers
and additional degrees of freedom describing flavor and
possibly spin (handedness) coherence. We will treat the
neutrino two-point function as a fully dynamical entity, the
time development of which allows us to solve for the time
evolution of the neutrino occupation numbers.
Similarly, the general Feynman rules for the charged

lepton two-point functions are

(11)

In this development we will assume that the charged
lepton distributions are thermal. With this assumption, the
form of the charged lepton two-point function will depend
only on the charged lepton temperature, chemical potential,
and mass.
Note that since charged leptons are Dirac particles, the

arrow-clashing propagator for charged leptons always
connects the charged lepton field with its Dirac counterpart.
On the other hand, for Majorana neutrinos, the arrow-
clashing propagator connects the field to itself.
In the low-energy limit, the electroweak bosons are not

dynamical, and their position space Feynman rules are
simply given by

(12)

Here, we have used the Feynman gauge, but other choices
of gauge give physically equivalent expressions.
We will often express combinations of coupling con-

stants and electroweak boson masses that appear in the
Feynman diagrams in terms of the Fermi constant

GF ≡ g2

4
ffiffiffi
2

p
M2

W

(13)

and use

cos θW ¼ MW

MZ
: (14)

It is sometimes convenient to denote the combination
of all components of a two-point function or vertex by
omitting the arrows. This is equivalent to using the four-
component spinor notation. For example, we can write

(15)

where

Gν;IJ ≡
 
ðGν;IJÞαβ ðGν;IJÞα _β
ðGν;IJÞ _αβ ðGν;IJÞ _α _β

!
: (16)

The use of diagrams without arrows is simply shorthand
notation, which implies a sum of every possible
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Employing the time- and momentum- 
dependent co-rotating frame trans- 
formation largely decouples the ultra- 
high frequency neutrino vacuum 
oscillations. 

•  (Q)QKE, νscatt+vacuum osc. 
•  (B)Boltzmann, full 
•  T ~ 0.5 MeV 
•  **flavor not equilibrated** 0 5 10 15 20 25
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Conclusion/Outlook 

¨  Include full standard model/quantum theory: 
¤  Non-equilibrium field theoretic neutrino quantum kinetics 

¤  Flavor oscillations: we’ve shown for the first time that in the self-consistent 
approach the neutrino flavors have not ‘equilibrated’ as BBN is starting 

¤  Test nuclear reactions & BSM scenarios that may affect BBN 

¨  Time/momentum dependent co-rotating frame improves 
straightforward method by factor of 20 computing time  
¤  convergence properties undergoing testing 

¨  Related work 
¤  testing the validity of the assumption of homogeneity and isotropy in the 

early universe 
n  neutrino flavor oscillations can (do?) affect this 
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