

Review of the first W boson mass measurement with the ATLAS Detector

F. Balli, on behalf of the ATLAS collaboration CIPANP 2018, Palm Springs

DE LA RECHERCHE À L'INDUSTRI

Outline

- Introduction
- Modeling aspects
- Experimental aspects
- Conclusion and summary

Eur. Phys. J. C 78 (2018) 110

Introduction

- Strong physics motivation for high precision W mass measurement (‱)
 - Electroweak fit (allowed m_W values from SM predictions) : natural goal of 7 MeV
 - Constraints on new physics (NP) — target 5 MeV according to theorists
- Long and steady efforts throughout HEP colliders history to reach the current precision

Current world average (Tevatron): m_W = 80.385 ± 0.015 GeV

W mass at LHC : more data, larger challenges

- In pp (as opposed to $p\bar{p}$) W+/W- boson production is asymmetric
 - Different contributions from sea/valence quarks
 - Charge dependence of pT spectrum and thus on the measurements observables (pT and mT, see next slide)
- More heavy flavour initiated production (25% of the W production is induced by at least one second generation quark s or c)
- W+, W- and Z are produced by different light flavour fractions
 - W measurements rely heavily on Z measurements
- Larger gluon-induced W production
- Large PDF-induced W-polarisation uncertainty (valence vs sea quarks)
- Strange quark pdf uncertainty —> uncertainty on the relative fraction of charm-initiated W boson —> alter the balance between valence quark and sea quark

Analysis strategy

- Measurement's methodology :
 - obtain predictions with simulated events for signal and background (except data-driven multijet background)
 - to extract the result, compare data and predictions for distributions sensitive to m_W (lepton p_T, transverse W mass m_T) by performing a template χ2 fit
- Very simple in principle, but extremely challenging in practice as it requires at the 1/10,000 level :
 - Accurate theoretical description of W production and decay kinematics in the simulation
 - Precise calibration of the detector
- Fully reconstructed mass in Z-boson sample to validate the analysis and to provide significant experimental and theoretical constraints (ancillary measurements)

Measurement's categories

Decay channel	$W \to e \nu$	$W \to \mu \nu$
Kinematic distributions Charge categories $ \eta_{\ell} $ categories	$\begin{array}{c} p_{\rm T}^{\ell}, m_{\rm T} \\ W^+, W^- \\ [0, 0.6], [0.6, 1.2], [1.8, 2.4] \end{array}$	$p_{\rm T}^{\ell}, m_{\rm T}$ W^+, W^- [0, 0.8], [0.8, 1.4], [1.4, 2.0], [2.0, 2.4]

- Measurement performed in 2 channels, using 2 observables, 2 charge categories, 3 (4) |η(lepton)| bins in the electron (muon) channel
 - In total, 28 different values of m_W are extracted
 - Allows to :
 - Thoroughly validate the physics modelling
 - benefit from different sensitivities to systematic uncertainties

Event selection

- Lepton selection
 - muon : $p_T > 30$ GeV, $|\eta| < 2.4$, track-based isolation
 - electron : $p_T > 30$ GeV, $|\eta| < 1.2$ or $1.8 < |\eta| < 2.4$, track and calorimeter-based isolation

- Recoil : u_T < 30 GeV
- m_T > 60 GeV, p_T^{miss} > 30 GeV

 $\vec{p}_{T}^{miss} = - (\vec{u}_{T} + \vec{p}_{T}\ell)$

 \vec{u}_{T} : vector sum of calorimeter deposits excluding lepton deposits

 $m_T = \sqrt{[2 p_T \ell p_T^{miss} (1 - \cos \Delta \phi)]}$

MODELING ASPECTS

Introduction to the modeling

- Factorisation of cross-section under 4 terms
 - Approximation checked and valid at 2 MeV level for m_W

spherical harmonics

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_1\,\mathrm{d}p_2} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right] \left[(1+\cos^2\theta) + \sum_{i=0}^7 A_i(p_{\mathrm{T}},y)P_i(\cos\theta,\phi)\right]$$

- Baseline MC is Powheg+Pythia8
- do(m)/dm modeled with Breit Wigner
- Other terms : reweight baseline MC according to various predictions
 - 1. $d\sigma(y)/dy$: fixed-order NNLO prediction from DYNNLO
 - 2. p_T at a given y : Pythia8 AZ
 - 3. polarisation Ai : fixed-order NNLO prediction from DYNNLO

Polarisation and rapidity

- Use of DYNNLO (Fixed-order NNLO)
- Validate against 7 TeV ATLAS W, Z cross-section measurements

Eur. Phys. J. C 77 (2017) 367

 PDF : CT10nnlo (best agreement), MMHT14nnlo and CT14nnlo used for uncertainties (others disfavoured by the data)

- Polarisation : describes the kinematics of vector boson decay products
- ATLAS Z polarisation measurement validates fixed-order prediction

JHEP 08 (2016) 159

uncertainties propagated from Z to W

10

Boson transverse momentum

11

- Use Pythia8 AZ tuned on Z pT ATLAS data JHEP 09 (2014) 145
 - Good agreement for

$$R_{W/Z}(p_{\rm T}) = \left(\frac{1}{\sigma_W} \cdot \frac{\mathrm{d}\sigma_W(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right) \left(\frac{1}{\sigma_Z} \cdot \frac{\mathrm{d}\sigma_Z(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right)^{-1}$$

- Uncertainties on PS include
 - tune uncertainties
 - c and b masses uncertainties
 - factorisation scale variation
 - LO PS PDF uncertainty

Electroweak and QCD uncertainties

- QED/EW effects : mainly FSR photons, implemented with Photos •
 - NLO EW corrections from Winhac taken as uncertainty \bullet
 - FSR pair production impact checked with Photos and Sanc ullet

Decay channel	$W \to e \nu$			$\to \mu \nu$	 PDFs uncertainties to 				nties to
Kinematic distribution	$p_{ ext{T}}^\ell$	m_{T}	p_{T}^ℓ	m_{T}	1	NNLC) pre	edicti	ons are
$\delta m_W [{ m MeV}]$					(domina	ant :	may	do better
FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1	i	n the	futur	e witl	n profiled
Pure weak and IFI corrections	3.3	2.5	3.5	2.5	c	sots (i	ncorr	oratir	na narton
FSR (pair production)	3.6	0.8	4.4	0.8		showa	r)	Jorain	ig parton
Total	4.9	2.6	5.6	2.6					
W-boson charge			V	V^+	W	7-	Com	ined	
Kinematic distribution			p_{T}^ℓ	m_{T}	$p_{ ext{T}}^\ell$	m_{T}	p_{T}^ℓ	m_{T}	
$\delta m_W [{ m MeV}]$								7	
Fixed-order PDF uncertainty			13.1	14.9	12.0	14.2	8.0	8.7	
AZ tune			3.0	3.4	3.0	3.4	3.0	3.4	
Charm-quark mass			1.2	1.5	1.2	1.5	1.2	1.5	
Parton shower $\mu_{\rm F}$ with heavy-flat	vour dec	orrelation	n 5.0	6.9	5.0	6.9	5.0	6.9	
Parton shower PDF uncertainty			3.6	4.0	2.6	2.4	1.0	1.6	
Angular coefficients			5.8	5.3	5.8	5.3	5.8	5.3	
Total			15.9	18.1	14.8	17.2	11.6	12.9	

EXPERIMENTAL ASPECTS

Lepton calibration

14

- muon momentum scale calibration using Z, extrapolation to W using p_Te(W) calibration residual dependence
- muon sagitta bias calibration uses W events (E/p) and Z events

- electron calibration uses Z events
 - Overall average relative uncertainty 9.4 x 10⁻⁵
 - φ modulation due to mechanical deformation under gravity corrected with W and Z events

Lepton calibration

15

- Selection efficiencies for reconstruction, identification, trigger, isolation ~10(8) MeV for pTe(mT) fit
 - use tag-and-probe methods for the scale factors and uncertainties
- Total lepton uncertainty ~10 MeV (muon) and 14 MeV (electron)

Hadronic recoil calibration

• 2-step procedure :

- Correct the modeling of the overall activity in the simulation
- Correct residual discrepancy in the recoil response and resolution using Z—>*ll* events
- 2.6/13.0 MeV uncertainty on p_Te/m_T fit

Multijet background

- data-driven technique :
 - 2 different background enriched regions to fit multijet fraction
 - EW and top contamination subtracted with MC estimation
 - 3 different observables : mT, pTe/mT, pT^{miss}
 - scan in isolation variable
 - linear extrapolation to signal region

Kinematic distribution		p	l T		m_{T}				
Decay channel	W –	$\rightarrow e\nu$	- W -	$\rightarrow \mu \nu$	W –	$\rightarrow e\nu$	W –	$\rightarrow \mu \nu$	
W-boson charge	W^+	W^-	W^+	W^-	W^+	W^-	W^+	W^-	
$\delta m_W [{ m MeV}]$									
$W \to \tau \nu$ (fraction, shape)	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3	
$Z \to ee$ (fraction, shape)	3.3	4.8	_	_	4.3	6.4	_	_	
$Z \to \mu \mu$ (fraction, shape)	_	_	3.5	4.5	_	_	4.3	5.2	
$Z \to \tau \tau$ (fraction, shape)	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3	
WW, WZ, ZZ (fraction)	0.1	0.1	0.1	0.1	0.4	0.4	0.3	0.4	
Top (fraction)	0.1	0.1	01	0.1	0.3	0.3	0.3	0.3	
Multijet (fraction)	3.2	3.6	1.8	2.4	8.1	8.6	3.7	4.6	
Multijet (shape)	3.8	3.1	1.6	1.5	8.6	8.0	2.5	2.4	
Total	6.0	6.8	4.3	5.3	12.6	13.4	6.2	7.4	

0.6 - 1.7 % (e channel) 0.5 - 0.7 % (mu channel)

mw extraction

- χ2 template fit to the data in each category (distribution, charge, lepton channel, η bin)
- All categories give consistent result —> strength of detector calibration and physics modelling
- combination using BLUE method

Combination	Weight
Electrons	0.427
Muons	0.573
$m_{ m T}$	0.144
p_{T}^{ℓ}	0.856
W^+	0.519
W^-	0.481

CONCLUSION AND SUMMARY

$m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$

 $= 80370 \pm 19$ MeV,

Standard Model RAIDEN WINS

$m_{W^+} - m_{W^-} = -29 \pm 28 \text{ MeV}$

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof of Comb.
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	
m_{T} - $p_{\mathrm{T}}^{\ell}, W^{\pm}, e$ - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

What's next?

- What can be done to improve the precision in the coming years ?
 - measurement at different center of mass energies
 - PDF sensitivity is different (interesting for combinations)
 - special LHC runs with lower pile-up : reduces hadronic recoil uncertainties, gives more weight to m_T measurement, renders some precise ancillary measurements possible, *e.g.* p_T(W)
 - Increase the precision on PDFs : more LHC data in fits, more constraints at high η (HL-LHC)...
 - More progress on theory side for W p_T : new or improved generators including resummation techniques
 - Experimental innovations : e.g. pile-up mitigation techniques
 - Combinations with existing measurements (*e.g* Tevatron)

Thank you for your attention!!

BACKUP

Polarisation

- Crucial to get right in *pp* collisions, otherwise miss some effects
- ATLAS measurement of Z angular coefficients validates fixedorder pQCD NNLO prediction
 - except for A₂ : additional uncertainty
 - data/prediction difference is added to the uncertainty ; pseudo-experiments show no correlation with other coefficients
 - Uncertainties on the Z measurement are propagated to the W

W boson transverse momentum

Pythia8 tuned on Z pT ATLAS data (AZ tune)

Pythia8
AZ
$egin{array}{c} 1.71 \pm 0.03 \\ 0.1237 \pm 0.0002 \\ 0.59 \pm 0.08 \end{array}$
45.4/32

 Good agreement is obtained for the ratio of differential cross-sections using this tune:

$$R_{W/Z}(p_{\rm T}) = \left(\frac{1}{\sigma_W} \cdot \frac{\mathrm{d}\sigma_W(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right) \left(\frac{1}{\sigma_Z} \cdot \frac{\mathrm{d}\sigma_Z(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right)^{-1}$$

- p_T(W) is obtained via the product of this ratio and the experimental Z p_T spectrum
 - The total uncertainty being the sum in quadrature of these two components, ~1-2%

Uncertainties to pt(W)

- Only modelling uncertainties which are uncorrelated between Z and W give sizeable uncertainties on the measurement
 - Induced by heavy flavour initiated production : 6/3% of cc/bb for Z, 20% of cs for W production
- Missing higher orders in QCD ISR : factorisation scale (μ_F) variations taken as correlated between W and Z for light quark, independently for heavy quarks
- other sources : uncertainty on m_c, choice of parton shower LO PDF

 Central prediction and uncertainty well validated with the recoil distribution in the data

pt modeling strategy

- Very different prediction of p_T(W)/p_T(Z) ratio from resummed technique or Powheg MiNLO with respect to Pythia 8 AZ
- Pythia8 AZ is validated by the data (u//) contrary to other predictions
- Negligible impact of the parton shower model (Herwig 7)

F.BALLI – W mass measurement with the ATLAS Detector – CIPANP 2018

pt modeling strategy

fixed-order uncertainty

- Experimental polarisation uncertainties from Z measurement propagated to W, additional uncertainty for A2 (disagreement with DYNNLO)
- CT10nnlo relative variations of pT^W and pT^Z are considered

Parton shower uncertainty

- factorisation scale variations correlated between W/Z for light quark, uncorrelated for heavy quarks
- other sources : m_C, parton shower LO PDF

Modeling tests

Use NNPDF3 prediction as pseudo-data, perform the various reweightings (y, p_T , polarisation) to CT10 sample : strongly validates the modeling procedure $\Delta m_W = 1.5 \pm 2.0 \text{ MeV}$

Recoil calibration

Recoil calibration

Recoil bias vs pTZ

Recoil resolution vs ΣE_T

Z ee plots after all corrections

34

Z mumu plots after all corrections

35

Z mass measurement

Hadronic recoil

37

Lepton eta

0

-0.5

-1

0.5

1.5

1

2

η

0.99

0.98

-2

-1.5

Electron calibration

- Electron measurement : energy from the EM calorimeter; eta and phi from the ID
- Calibration sequence :
 - Calorimeter longitudinal intercalibration using muon energy deposits (Z—>mumu events)
 - Passive material and presampler response corrections derived using longitudinal shower profiles of electrons and photons
 - Overall energy scale and resolution from Zee decays

φ modulation due to mechanical deformation under gravity of the calorimeter ('pear-shape') corrected with W and Z events

Electron calibration

Muon calibration

- Kinematic parameters from inner tracker
 - radial and longitudinal (sagitta) biases
- muon momentum scale calibration using Z, extrapolation to W momentum range using p_T*e*(W) spectrum
- muon sagitta bias correction uses W events (E/p) and Z events

Muon calibration

As expected, uncertainties are smaller than for electron

Background fractions

$W \to \mu \nu$												
Category	$W \to \tau \nu$	$Z \to \mu \mu$	$Z \to \tau \tau$	Top	Dibosons	Multijet						
$W^{\pm} \ 0.0 < \eta < 0.8$	1.04	2.83	0.12	0.16	0.08	0.72						
$W^{\pm} 0.8 < \eta < 1.4$	1.01	4.44	0.11	0.12	0.07	0.57						
$W^{\pm} 1.4 < \eta < 2.0$	0.99	6.78	0.11	0.07	0.06	0.51						
$W^{\pm} 2.0 < \eta < 2.4$	1.00	8.50	0.10	0.04	0.05	0.50						
W^{\pm} all η bins	1.01	5.41	0.11	0.10	0.06	0.58						
W^+ all η bins	0.99	4.80	0.10	0.09	0.06	0.51						
W^- all η bins	1.04	6.28	0.14	0.12	0.08	0.68						
		$W \rightarrow$	$e\nu$									
Category	$ W \rightarrow \tau \nu$	$Z \to ee$	$Z \to \tau \tau$	Top	Dibosons	Multijet						
$W^{\pm} \ 0.0 < \eta < 0.6$	1.02	3.34	0.13	0.15	0.08	0.59						
$W^{\pm} \ 0.6 < \eta < 1.2$	1.00	3.48	0.12	0.13	0.08	0.76						
$W^{\pm} 1.8 < \eta < 2.4$	0.97	3.23	0.11	0.05	0.05	1.74						
W^{\pm} all η bins	1.00	3.37	0.12	0.12	0.07	1.00						
W^+ all η bins	0.98	2.92	0.10	0.11	0.06	0.84						
W^- all η bins	1.04	3.98	0.14	0.13	0.08	1.21						

Full uncertainty table

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	\mathbf{EW}	PDF	Total	$\chi^2/{ m dof}$
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
$m_{\rm T}, W^+, e^{-\mu}$	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
$m_{\rm T}, W^{-}, e^{-\mu}$	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
$m_{\mathrm{T}}, W^{\pm}, e$ - μ	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\mathrm{T}}^{\ell}, W^+, e^{-\mu}$	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\rm T}^{\ell}, W^{-}, e^{-\mu}$	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$ - μ	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$m_{\rm T} - p_{\rm T}^{\ell}, W^+, e$	80345.4	11.7	0.0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
$m_{\rm T}$ - $p_{\rm T}^{\bar{\ell}}, W^{-}, e$	80359.4	12.9	0.0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
$m_{\mathrm{T}} - p_{\mathrm{T}}^{\bar{\ell}}, W^{\pm}, e$	80349.8	9.0	0.0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{\mathrm{T}}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
m_{T} - $p_{\mathrm{T}}^{\ell}, W^{+}, \mu$	80364.1	11.4	12.4	0.0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
m_{T} - $p_{\mathrm{T}}^{\ell}, W^{-}, \mu$	80398.6	12.0	13.0	0.0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
m_{T} - $p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.0	8.6	10.7	0.0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
m_{T} - $p_{\mathrm{T}}^{\ell}, W^{+}, e$ - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^{-}, e$ - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
m_{T} - $p_{\mathrm{T}}^{\ell}, W^{\pm}, e$ - $\mu \mid$	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

F.BALLI – W mass measurement with the ATLAS Detector – CIPANP 2018

lepton uncertainty tables

$ \eta_{\ell} $ range	[0.	0, 0.8]	[0.	[8, 1.4]	[1.	4, 2.0]		[2.0, 2.4]	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [{ m MeV}]$										
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8.4	8.8
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4	3.8	1.0	1.2
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5	4.3	0.6	0.6
Reconstruction and										
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4	5.5	2.7	2.2
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1	9.9	4.1	3.2
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	116.1	9.8	9.7
$ \eta_{\ell} $ range			[0.0	0, 0.6]	[0.0	[5, 1.2]	[1.82	2, 2.4]	Com	bined
Kinematic distribution			p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^ℓ	m_{T}
$\delta m_W [{ m MeV}]$										
Energy scale			10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution			5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
Energy linearity			2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails			2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficien	ncv		10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency	v		10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation ϵ	fficien	cies	0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mismeasureme	ent	_	0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total			19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3

F.BALLI – W mass measurement with the ATLAS Detector – CIPANP 2018

Observable	Channel	η range	Weight
$m_{ m T}$	$W^+ \to \mu \nu$	$ \eta < 0.8$	0.018
		$0.8 < \eta < 1.4$	0.022
		$1.4 < \eta < 2.0$	0.003
		$2.0 < \eta < 2.4$	0.006
	$W^- ightarrow \mu \nu$	$ \eta < 0.8$	0.020
		$0.8 < \eta < 1.4$	0.018
		$1.4 < \eta < 2.0$	0.022
		$2.0 < \eta < 2.4$	0.001
	$W^+ \to e \nu$	$ \eta < 0.6$	0.013
		$0.6 < \eta < 1.2$	0.001
		$1, 8 < \eta < 2.4$	0.010
	$W^- ightarrow e \nu$	$ \eta < 0.6$	0.008
		$0.6 < \eta < 1.2$	0.000
		$1.8 < \eta < 2.4$	0.002
p_{T}^ℓ	$W^+ \to \mu \nu$	$ \eta < 0.8$	0.101
		$0.8 < \eta < 1.4$	0.076
		$1.4 < \eta < 2.0$	0.050
		$2.0 < \eta < 2.4$	0.011
	$W^- \to \mu \nu$	$ \eta < 0.8$	0.097
		$0.8 < \eta < 1.4$	0.071
		$1.4 < \eta < 2.0$	0.047
		$2.0 < \eta < 2.4$	0.010
	$W^+ \to e \nu$	$ \eta < 0.6$	0.056
		$0.6 < \eta < 1.2$	0.071
		$1, 8 < \eta < 2.4$	0.081
	$W^- ightarrow e \nu$	$ \eta < 0.6$	0.062
		$0.6 < \eta < 1.2$	0.056
		$1.8 < \eta < 2.4$	0.067

Weights of all categories

Post-fit data-mc plots (W-, electron)

