

Analysis and Preliminary Results of the PRad Experiment at JLab

Weizhi Xiong
Duke University
for the PRad Collaboration
CIPANP Meeting 2018

Outline

- Proton charge radius puzzle and PRad experiment
- Experimental apparatus
- Analysis and preliminary results
- Summary

Proton Charge Radius Puzzle

Electron scattering: 0.8751 ± 0.0061 fm (CODATA 2014)

Muon spectroscopy: 0.8409 ± 0.0004 fm (CREMA 2010, 2013)

H spectroscopy (2017): 0.8335 ± 0.0095 fm (A Beyer et al. Science 358 (6359). 2017)

H spectroscopy (2018): 0.877 ± 0.013 fm (H Fleurbaey et al. PRL.120.183001 (2018))

Proton Charge Radius from ep Elastic Scattering

• Elastic ep scattering, in the limit of Born approximation (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE' \sin^2 \frac{\theta}{2} \qquad \tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1 + 2(1+\tau) \tan^2 \frac{\theta}{2}\right]^{-1}$$

Structure-less proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

- G_E and G_M can be extracted using Rosenbluth separation
- For PRad, cross section dominated by G_E

Taylor expansion of G_F at low Q²

$$G_E^p(Q^2) = 1 - \frac{Q^2}{6} \langle r^2 \rangle + \frac{Q^4}{120} \langle r^4 \rangle + \dots$$

Derivative at low Q² limit

$$\left\langle r^2 \right\rangle = - \left. 6 \, \frac{dG_E^p(Q^2)}{dQ^2} \right|_{Q^2 = 0}$$

PRad Experiment Overview

- PRad goal: Measuring proton charge radius using ep elastic scattering
- Unprecedented low Q² (~2x10⁻⁴ GeV²)
 - 1. Fill in very low Q^2 region
- Covers two orders of magnitude in low Q² with the same detector setting
 - 1. $\sim 2x10^{-4} 6x10^{-2} \text{GeV}^2$
- Normalize to the simultaneously measured Møller scattering process
 - 1. best known control of systematics
- Extract the radius with precision from subpercent cross section measurement

PRad Experiment Overview

- PRad goal: Measuring proton charge radius using ep elastic scattering
- Unprecedented low $Q^2 (\sim 2x10^{-4} \text{ GeV}^2)$
 - 1. Fill in very low Q^2 region
- Covers two orders of magnitude in low Q² with the same detector setting
 - 1. ~2x10⁻⁴- 6x10⁻²GeV²
- Normalize to the simultaneously measured Møller scattering process
 - best known control of systematics
- Extract the radius with precision from subpercent cross section measurement

vacuum chamber pressure: 0.3 mTorr

Hydrogen

PRad Setup (Side View)

- Two large area GEM detectors
- Small overlap region in the middle
- Excellent position resolution (72 μm)
- Improve position resolution of the setup by > 20 times
- Large improvement for Q² determination

Hydrogen

PRad Setup (Side View)

- Hybrid EM calorimeter (HyCal)
 - Inner 1156 PWO₄ modules
 - Outer 576 lead glass modules
- 5.8 m from the target
- Scattering angle coverage: ~ 0.6° to 7.5°
- Full azimuthal angle coverage
- High resolution and efficiency

Analysis – Background Subtraction

 Runs with different target condition taken for background subtraction and studies for the systematic uncertainty

Developed simulation program for target density (COMSOL finite element)

analysis)

Analysis – Background Subtraction (2.2 GeV)

- ep background rate ~ 10% at forward angle (<1.3 deg, dominated by upstream collimator), less than 2% otherwise
- ee background rate ~ 0.8% at all angles

ee Background Contribution

Analysis – Event Selection

Event selection method

- 1. For all events, require hit matching between GEMs and HyCal
- For ep and ee events, apply angle dependent energy cut based on kinematics
 - Cut size depend on local detector resolution
- 3. For *ee*, if requiring double-arm events, apply additional cuts
 - 1. Elasticity
 - 2. Co-planarity
 - 3. Vertex z

Cluster energy E' vs. scattering angle θ (2.2GeV)

Analysis – Event Selection

Extraction of ep Elastic Scattering Cross Section

 To reduce the systematic uncertainty, the ep cross section is normalized to the Møller cross section:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{ep} = \left[\frac{N_{\mathrm{exp}}(ep \to ep \text{ in } \theta_i \pm \Delta\theta_i)}{N_{\mathrm{exp}}(ee \to ee)} \cdot \frac{\varepsilon_{\mathrm{geom}}^{ee}}{\varepsilon_{\mathrm{geom}}^{ep}} \cdot \frac{\varepsilon_{\mathrm{det}}^{ee}}{\varepsilon_{\mathrm{det}}^{ep}}\right] \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{ee}$$

- Event generators for unpolarized elastic ep and Møller scatterings have been developed based on complete calculations of radiative corrections
 - 1. A. V. Gramolin et al., J. Phys. G Nucl. Part. Phys. 41(2014)115001
 - 2. I. Akushevich et al., Eur. Phys. J. A 51(2015)1 (fully beyond ultra relativistic approximation)
- A Geant4 simulation package is used to study the radiative effects:

$$\sigma_{ep}^{Born(exp)} = \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{exp} / \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{sim} \cdot \left(\frac{\sigma_{ep}}{\sigma_{ee}}\right)^{Born(model)} \cdot \sigma_{ee}^{Born(model)}$$

Iterative procedure applied for radiative correction

Differential Cross Sections (Preliminary)

- Differential cross section v.s. Q^2 , with 2.2 and 1.1 GeV data (preliminary)
- Statistical uncertainties at current stage: ~0.18% for 2GeV, ~0.3% for 1GeV per point
- Systematic uncertainties at current stage: 0.8% ~ 2.0% for 2GeV, 0.9% ~2.0% for 1GeV (shown as shadow area)

Form Factor G_E (Preliminary)

 Proton electric form factor G_E v.s. Q², with 2.2 and 1.1 GeV data (preliminary)

 Systematic uncertainties shown as colored error bars

 Preliminary G_E slope seems to favor smaller radius

Proton Electric Form Factor G_E

Form Factor G_E (Preliminary)

Proton Electric Form Factor G_E

 Proton electric form factor G_E v.s. Q², with 2.2 and 1.1 GeV data (preliminary)

 Systematic uncertainties shown as colored error bars

 Preliminary G_E slope seems to favor smaller radius

Analysis Plan

- Finalize cross sections for both energy runs (summer 2018)
- Preliminary extraction of radius (summer 2018)
- Final extraction of proton charge radius (end of 2018)
- We are currently still working on a number of corrections and systematic uncertainties
 - 1. Background subtraction and pile-up effects at small angle (θ <1.1°)
 - 2. Radiative correction
 - 3. Inelastic ep contribution
 - 4. Trigger efficiency
 - 5. Bremsstrahlung photon from target
 - 6. ...
- Radius fitting study is ongoing: https://arxiv.org/abs/1803.01629

Summary

- PRad experiment is uniquely designed to address the *Proton Radius Puzzle*
 - 1. Discrepancy between electron scattering and muon spectroscopy results
 - 2. Unprecedented low Q^2 data set ($\sim 2x10^{-4}$ GeV²) has been collected in e-p elastic scattering experiment
 - 3. Data with two orders of magnitude in low Q^2 range ($\sim 2x10^{-4} 6x10^{-2}$ GeV²) in one experimental setting
- Preliminary cross section and G_E extracted, covering Q² from 3x10⁻⁴ to 5x10⁻² GeV²
- Preliminary G_E slope seems to favor smaller radius
- Ongoing work:
 - 1. Finalizing systematic uncertainties
 - 2. Utilizing the full Q² data range
 - 3. Fitting study based on https://arxiv.org/abs/1803.01629