Fingerprints of the First Stars in the Sky-Averaged Radio Spectrum

Raul A. Monsalve

McGill University

Credit: NASA / WMAP Team

June 2, 2018

J. Bowman, A. Rogers, R. Monsalve, T. Mozdzen, N. Mahesh 2018, Nature, 555, 67

Summary

- 1) The **EDGES experiment** has **detected an absorption feature** in the sky-averaged spectrum centered at 78 MHz.
- 2) This is consistent with stars forming by 180 Myrs after the Big Bang.
- 3) Feature is **deeper, sharper, and earlier** than expected.
- 4) We **remain agnostic** regarding the **interpretation**.
- 5) We are working to verify the measurement.

S.G. Djorgovski et al. & Digital Media Center, Caltech

Universe ionized by $z\sim 6$ McGreer et al. (2015)

Redshift

Emission at 21 cm from Hydrogen Atom

Due to Cosmological Expansion

$$v_{\rm obs} = \frac{v_{\rm emit}}{(1+z)}$$

Redshift	Frequency				
0	1420	MHz			
6	200	MHz			
13	100	MHz			
140	10	MHz			

21-cm Cosmology

21-cm Brightness Temperature

Spin Temperature (T_S)

$$\frac{\boldsymbol{n_{upper}}}{\boldsymbol{n_{lower}}} = 3 \cdot exp\left(-\frac{h \cdot v_{21cm}}{k_b \cdot \boldsymbol{T_S}}\right)$$

 $v_{21cm} = 1420 \text{ MHz}$ h : Planck constant k_{b} : Boltzmann constant

http://www.cv.nrao.edu/course/astr534/HILine.html

$$T_{\rm S}^{-1} \approx \frac{T_{\rm R}^{-1} + x_{\rm c} T_{\rm K}^{-1} + x_{\alpha} T_{\alpha}^{-1}}{1 + x_{\rm c} + x_{\alpha}}$$

- $T_{\rm R}$: temperature of background radiation
- $T_{\rm K}$: kinetic temperature of the gas
- T_{α} : color temperature of Ly α photons
- x_{c} : coupling due to collisions
- x_{α} : coupling due to Wouthuysen-Field effect

Global (sky-average) 21-cm Signal

Nature and Timing of First Sources

Range of Traditional Models is Wide

Mirocha et al. (2017b)

Effect of Lower Gas Temperature

Greenhill 2018, Nature, 555, 38

Epoch of Reionization Constraints (Hot IGM)

R. Monsalve, A. Rogers, J. Bowman, T. Mozdzen (2017)

Global 21-cm Measurements

- 1) Probe of the average:
 - Kinetic and Spin Temperature of IGM
 - Radiation Background
 - Fraction of Neutral Hydrogen
- 2) Provides constraints on:
 - **Timing** and **strength** of UV coupling and X-ray heating
 - Type of early sources (PopII vs PopIII, Black Holes, X-Ray Binaries, etc.)
 - Mechanisms of star formation cooling and feedback
 - **Redshift** and **Duration** of epoch of **Reionization**
- 3) **"Simpler" instrumentation** than arrays.
- 4) One of few current alternatives to probe Cosmic Dawn (z > 14) period.

Challenges

- 1) Hard instrument calibration problem.
- 2) Strong diffuse foregrounds compared to 21-cm signal.

Diffuse Foregrounds

6) Large **spatial gradients**.

Global 21-cm Experiments

PRI^ZM (Kwazulu-Natal, Sievers et al.)

SARAS 2 (RRI, Subrahmanyan et al.)

LEDA (Harvard, Greenhill et al.)

SCI-HI (Carnegie Mellon, Peterson et al.)

HYPERION (Berkeley, Parsons et al.)

CTP (NRAO, Bradley et al.)

EDGES

Experiment to Detect the Global EoR Signature

Prof. Judd Bowman (PI) Dr. Alan Rogers **Dr. Raul Monsalve** Dr. Thomas Mozdzen Ms. Nivedita Mahesh

Western Australia

Radio-Quiet Site Murchison Radio-astronomy Observatory (MRO)

MWA

SKA-Low

EDGES Instruments

Adapted from Pritchard & Loeb (2011)

EDGES Block Diagram

EDGES Low-Band

3

Ground Plane

Instrumental Calibration

- 1) Receiver gain and offset.
- 2) Impedance mismatch between receiver and the antenna.
- 3) Antenna and ground losses.
- 4) Frequency-dependence of the antenna beam.

Observations

EDGES Low-Band LST [hr] antenna temperature [K]

frequency [MHz]

EDGES High-Band

Daily Low-Band Residuals

	1 1		. '				
258	F Nw	~~~~~	vum	~~~~	m	<u> </u>	mK.
259	- Lm	mp	mm	\sim	~~~~~	~~~ 168	mK.
260	- Mr	vm	mm	vm	m	V~~ 181	mK.
261	F V M	min	mm	min	mm	193	mK.
262	- Win	1mm	min	m	mm	187	mK.
263		Mr. MA	han ha	~		177	mK.
205	F WY.	M.N		- A.		174	mК
204	- wv			· ~ ~ ~ ~	~~~~~	166	mK
205	F .W	1~~~~	mm	~~~~~	m	100	mK.
266	F 1/1	mm	Min	~~~~~		W~ 199	mĸ.
267	- VW	mm	han	mm	m	V~ 182	mĸ.
268	110	MMM	m	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	202 🔨	mK.
269	- MiM	min	mm	m	m	Arr 175	mK.
270	- Lin	Mm	m	m	\sim	<mark>~~</mark> 182	mK.
271	- WAN	hart	1mm	Amr	m m	277	mK.
5 273		mann	Man	m		185	mK.
10 273						169	mК
274			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	175	mK
- Z/S	T M	v vm~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	~~~~	171	mK.
E 276	- M	mm	mm	m	~~~~~	104	mk.
277	F VM	m	~~~~~	m	~~~~~	~~ 184	mĸ.
<u> </u>	- WV	Mm	mm	$\sim\sim\sim$	my	V~ 184	mK.
<u> </u>	- Vm	Mm	m	m	mp	~~ 165	mK.
280	- Vin	mm	mm	$\sim\sim\sim\sim$	~~~~~	M 180	mK.
≈ 281	- ~~	MMM	m	m	m	160	mK.
k 282	IM	M MAAAA	WM MA	m	non M	√ 271	mK.
¥ 283	LINAN	1.MARAN		A. A~~~		247	mK.
5 205	F Y	N A A A		γ	v~~ ~vv	199	mK
> 205	F When	PW~			n-w	189	mK
m 287	F WW	www	m	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	172	mK.
288	F W	my	mm	$\sim \sim \sim$	~~~~^	m 1/2	mκ.
289	F WW	᠓ᡙᡒM	mm	~~~~~	m	M 210	mK.
290	- 11/2	mm	hhm	nom		191 ݕ	mK.
291	-w~	nhin	mm	m	m	<mark>~~</mark> 145	mK.
292	- \m	min	mm	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M 158	mK.
293	-1.00	hanna	home	m	m	175	mK.
294	L	1 AN MAR	MANIA	mmn	A. A.A.A	245	mK.
205	W		V~V	· · · · · · · · · · · · · · · · · · ·		175	mК
295	F	mp			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	176	mK
296	- mu	~w~	m	m	m	104	
297	t Vm	WW	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	~	INK.
298	- Um	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	m	vvv 149	mĸ.
302	- mm	hrm	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	~~~ 157	mK.
303	+W/	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	~~~~~	~~~ 172	mK.
304	- mm	when	\sim	mm	~~~~	152	mK.
	L' '	1					
	50	60	70	80	90	100	
			frequ	ency [I	MHz]		

21/	1200	i.m	A			169	mК
214		Sher.	~~~~	~~~~~	- market	151	mK
512	- wym	hur	m	\sim	m	~ 167	m K
316	- 2000	m	m	$\sim\sim\sim$	m	<u> </u>	mK.
317	- wh	www	v	$\sim\sim\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	152	mK.
318	- \'/~~	mon	mm		$\sim\sim\sim\sim$	\prec 162	mK
319	- W Min	mm	Mont	~~~~~	m	<mark>, /</mark> 175	mK.
320	- MA	mark	100000	m	home	~ 204	mK.
221	L	a ha h	A		A	~ 144	mK
221			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~	177	mK
		W	- mar	June	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	166	mK
323	- www	mm	~~~~~	~~~~~	mm	~ 100	
324	- 1,000	ham	mon	mm	my	~ 171	mK.
327	- Wm	m	m	~~~~	\sim	<u> </u>	mK.
328	M	m	m	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> 165</u>	mK.
329	- LAMO	Amm	Man	m	min	A 218	mK.
222	L V Lah	- mm	A	-		A 160	mK
22	L.L.A	\mathcal{O}				163	mK
224		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	243	mK
336	F LN VV	man	mm	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ 243	mk.
337	- Www	$\sqrt{\sqrt{2}}$	mm	mm	mm	N 224	mK.
338	- 12-000	mm	han	~~~~~	m	~ 174	mK.
339	- mm	mm	mon	m	m	~~ 194	mK.
340	- LM	n Mr	min	m	min	A 261	mK.
341	- ima	han	m	hours	man.	169	mK.
2/2				~		175	mК
042	- Min	J~~V/~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	204	mK
343		m~ww	m	mm	wh	M 204	m K
348	- mm	muh	mp	mm		<u>√~</u> 100	mK.
350	$-b^{-1}$	mi	www	m	mm	A 172	mK.
351	- 1mm	~mm	m	hmm	m	<u> </u>	mK.
352	- May	m	m	m	~~~~	<u>~</u> 177	mK.
354		1 Am	~	man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	196	mK.
255	W.m		1000 000			196	mК
		- Martin	~~~~~~			187	mK
557		m.	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ww	101	mK
358	- V~V	m	mm	· ·····	~~~~~	M 101	mĸ
360	- m	m	m	m	m	~ 151	mK.
361	- Lom	m	mm	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A 174	mK.
362	- 6 M.	mon	m	m	mm	- 193	mK
363	- in N	YAM M	r. An	m	mm	296	mK.
864	LYAMA	MAN		1000	~~~~	180	mK.
265			h As a	~~~~	A	192	mК
202		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	* ~~~~		167	mK
000		www	~~~~	~~~~~	~~~~		mK.
1	F V(~V	hm	m	m	mul	V 235	mK.
2	- WW	$\sim \sim $	γ	m	mm	~~ 185	mK.
	L		70			100	
	50	60	/0	80	90	100	
			freque	ency [M	lHz]		

2			'		170 mK
3	- Column	North Mark	when	min	193 mK
5	- MM-AMM	mm	~~~~~	m	163 mK
6	- Marin	mm	m		~~ 103 mK
/	- Mum	mm	vun		153 mK
8	- mm	mm	·····	mm	151 mk
9	- WW WW~~	m	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	167 mK_
11	- min	mm	mm	m	158 mK
12	- Marine	mm	min	m	100 mK
13	- more	m	m	~~~~m	~~ 186 mK_
16	- ymr	mm	mm	m	∧ 186 mK
17	- v when	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	~~ 137 mK_
77	- NAMMA	m	m	$\sim\sim\sim$	192 mK _
78	- mon	min	m	m	166 mK_
79	- hours	www	mm	~~~~~	164 mK
80	- Mr Win	mm	\dots	\sim	🛺 199 mK_
82	- MMMN	\sim	\sim	m	<mark>∽</mark> ∿ 258 mK _
83	- linhtun	mm	him	$\sim\sim\sim$	~ 209 mK_
84	- Jump	m	m	~~~~	<mark>~~ 1</mark> 66 mK _
85	- mm	mm	m	m	~ 178 mK_
86	- m/hmhm	mm	mm	\sim	🔨 183 mK -
87	- limm	mm	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ഹപപ179 mK₋
88	- home	Man	m	\sim	175 mK_
89	- Ymm	mm	m	$\sim\sim\sim$	👡 214 mK
93	- Chim	www	m	m	γ 182 mK _
94	- Mintron	mm	$\sim\sim\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	185 mK_
	_				-
	-				-
	-				-
	-				-
	-				-
	-				-
	-				-
	-				-
	-				-
	-				-
	-				-
	_				-
	-				-
	-				-
	-				-
	-				-
1	50 60	70	80	90	100
	50 00	from	oncy IA	90 /U-1	100
		rrequ	ency [N	ITZ]	

Summary of the Detection

J. Bowman, A. Rogers, R. Monsalve, T. Mozdzen, N. Mahesh 2018, Nature, 555, 67

Phenomenological 21-cm Model

$$m_{21}(\nu, \theta_{21}) = -A \left(\frac{1 - e^{-\tau} e^B}{1 - e^{-\tau}} \right)$$

$$B = \frac{4 \left(\nu - \nu_0\right)^2}{w^2} \quad \ln\left[-\left(\frac{1}{\tau}\right)\ln\left(\frac{1 + e^{-\tau}}{2}\right)\right]$$

Parameter Estimates

Estimates from Nominal Spectrum

Reported Estimates

Parameter	Best Fit	Uncertainty (3 σ)
A	0.5 K	+0.5/-0.2 K
ν_0	78 MHz	+/-1 MHz
W	19 MHz	+4/-2 MHz
τ	7	+5/-3

Sensitivity to Possible Calibration Errors

Error source	Estimated uncertainty	Modelled error level	Recovered amplitude (K)
LNA S11 magnitude	0.1 dB	1.0 dB	0.51
LNA S11 phase (delay)	20 ps	100 ps	0.48
Antenna S11 magnitude	0.02 dB	0.2 dB	0.50
Antenna S11 phase (delay)	20 ps	100 ps	0.48
No loss correction	N/A	N/A	0.51
No beam correction	N/A	N/A	0.48

J. Bowman, A. Rogers, R. Monsalve, T. Mozdzen, N. Mahesh 2018, Nature, 555, 67

Different Hardware Cases

J. Bowman, A. Rogers, R. Monsalve, T. Mozdzen, N. Mahesh 2018, Nature, 555, 67

Hardware and Processing Cases

Configuration	Sky Time (hours)	SNR	Centre Frequency (MHz)	Width (MHz)	Amplitude (K)
Hardware configurations (all P6)			\frown	\land	\frown
H1 – low-1 10x10 ground plane	528	30	78.1	20.4	0.48
H2 – low-1 30x30 ground plane	428	52	78.1	18.8	0.54
H3 – low-1 30x30 ground plane and recalibrated receiver	64	13	77.4	19.3	0.43
H4 – low-2 NS	228	33	78.5	18.0	0.52
H5 – Iow-2 EW	68	19	77.4	17.0	0.57
H6 – low-2 EW and no balun shield	27	15	78.1	21.9	0.50
Processing configurations (all H2 except P17)					
P3 – No beam correction		19	78.5	20.8	0.37
No beam correction (65-95 MHz)		25	78.5	18.6	0.47
HFSS beam model		34	78.5	20.8	0.67
FEKO beam model		48	78.1	18.8	0.50
P4 – No loss corrections		25	77.4	18.6	0.44
P7 – 5-term foreground polynomial (60-99 MHz)		21	78.1	19.2	0.47
P8 – Physical foreground model (51-99 MHz)		37	78.1	18.7	0.53
P14 – Moon above horizon		44	78.1	18.8	0.52
Moon below horizon		40	78.5	18.7	0.47
P17 – 15°C calibration (61-99 MHz, 5-term)		25	78.5	22.8	0.64
35°C calibration (61-99 MHz, 5-term)		16	78.9	22.7	0.48

J. Bowman, A. Rogers, R. Monsalve, T. Mozdzen, N. Mahesh 2018, Nature, 555, 67

Absorption Amplitude for Various GHA

Galactic Hour Angle (GHA)	SNR	Amplitude (K)	Sky Temperature (K)
6-hour bins			
0	8	0.48	3999
6	11	0.57	2035
12	23	0.50	1521
18	15	0.60	2340
4-hour bins			
0	5	0.45	4108
4	9	0.46	2775
8	13	0.44	1480
12	21	0.57	1497
16	11	0.59	1803
20	9	0.66	3052
	-		

J. Bowman, A. Rogers, R. Monsalve, T. Mozdzen, N. Mahesh 2018, Nature, 555, 67

How to Explain Deep Signal?

T_{S} can only be as low as kinetic temperature of IGM

Interaction of Baryons with Dark Matter?

1 + zFirst proposed by 100 40 30 20 15 10 Tashiro, Kadota, & Silk, 0 Phys. Rev. D 90, 083522 (2014) Also Muñoz, Kovetz, & Ali-Haimoud, -200 Phys. Rev. D 92, 083528 (2015) Traditional T_K T₂₁ (mK) -400 This produces lower $T_{\mathbf{K}}$ $T_{21}(z) \propto \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}}\right)$ -600 Cosmic Cosmic Dark dawn reionization ages 50 100 150 0 ν (MHz)

R. Barkana 2018, Nature, 555, 71

Interactions of Baryons with Dark Matter?

R. Barkana 2018, Nature, 555, 71

 m_{χ} : mass of dark matter particle

 $\frac{\text{Constraints}}{m_{\chi}} < 1.5 \text{ GeV}$ $\sigma_1 > 5 \times 10^{-21} \text{ cm}^2$

Interactions of Baryons with Dark Matter?

Nature of the interaction being debated Talks on May 30th by Julian Muñoz and Sam McDermott

Current consensus is that enough IGM cooling can be achieved if a small fraction (~1%) of DM particles posses electric minicharge (~ 10^{-6} the charge of an electron).

The DM mass is constrained to ~ 1-60 MeV (Muñoz & Loeb 2018, arXiv: 1802.10094v2)

Stronger Radiation Background ?

$$T_{21}(z) \propto \left(1 - \frac{T_{\rm CMB} + T_{\rm EXCESS}}{T_S}\right)$$

 $T_{\rm CMB}$ at $z \approx 17$ is 45 K.

For an absorption deeper by a factor ≥ 2 we need $T_{\text{EXCESS}} \geq T_{\text{CMB}}$.

A. Ewall-Wice, T.-C. Chang, J. Lazio, O. Dorie, M. Seiffert, R. A. Monsalve (arXiv: 1803.01815v1)

- 1) Black Holes from Pop-III stars, formed at $z \approx 30 20$ could produce enough background radiation.
- In some scenarios, T_{EXCESS} >> T_{CMB}. Large absorption reduced by X-ray heating, and reionization from same sources.
- 3) In some scenarios, reionization from these X-rays is consistent with Planck estimates for τ_e .
- 4) Broadly consistent with Source Populations, CXB, CIB, and Radio Background at $z \approx 0$.

Problems?

- 1) Models producing required excess radiation by $z \approx 17$, could over-produce the measured black hole density at low z.
- 2) Some mechanism necessary to supress black hole formation at z < 17.
- 3) If metallicity is high (0.001 of Solar), **Pop-III formation should cease**.

Stronger Radiation Background ?

A. Ewall-Wice, T.-C. Chang, J. Lazio, O. Dorie, M. Seiffert, R. A. Monsalve (arXiv: 1803.01815v1)

Cases with $\frac{T_{\text{EXCESS}}}{T_{\text{CMB}}} \ge 1$ are consistent with absorption feature.

UV Luminosity Functions

-) Feature at 78 MHz is not expected by extrapolation of Galaxy Luminosity Functions (LF)s at $z \le 10$.
-) **Consistency possible** for **enhanced star formation** in galaxies beyond the current detection limits.
- **Timing conflict** is independent of exotic 21-cm amplitude.

Mirocha & Furlanetto (2018) (arXiv:1803.03272)

With EDGES we remain agnostic about the cosmological/astrophysical explanations, and focused on the verification of our measurement.

Other experiments trying to verify the measurement include PRI^ZM, LEDA, and SARAS 2

EDGES Instruments

Adapted from Pritchard & Loeb (2011)

EDGES Mid-Band

Low-Band

High-Band

Mid-Band

Antenna Reflection Coefficients

Summary

- 1) The **EDGES experiment** has **detected an absorption feature** in the sky-averaged spectrum centered at 78 MHz.
- 2) This is consistent with stars forming by 180 Myrs after the Big Bang.
- 3) Feature is **deeper, sharper, and earlier** than expected.
- 4) We **remain agnostic** regarding the **interpretation**.
- 5) We are working to verify the measurement.

Thank You