

NORTHWESTERN

UNIVERSITY

10KT H W EST EKN UNIVERSITY

Gravitational-wave Transient Astronomy on the Rise

Chris Pankow (CIERA/Northwestern)

CIPANP 2018: Palm Springs, Florida

DCC: <u>G1800710</u>

2015 — 2016: First Observing Run

GW150914 and the birth of gravitational-wave astronomy

Advanced Interferometer Spectral Sensitivity

Low Frequency: motion of the Earth coupling into motion of the test masses

Monochromatic Lines:

calibration lines, 60 Hz power line and harmonics thereof

High Frequency: uncertain photon

arrival times at photodetector

O1 BBH Events

O1 BBH Events

BBH Masses and Spins

Parameter Degeneracies: Primarily sensitive to the *chirp mass* — leaves **large degeneracies** along contours of chirp mass

$$\mathcal{M}_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$
$$\chi_{\text{eff}} = \frac{m_1 s_{1,z} + m_2 s_{2,z}}{m_1 + m_2}$$

Frequency content (and thus "length in band" affected by both *effective spin* and *mass ratio* at same order in expansion of radiation amplitude/phase

PRX 6, 041015 (2016)

2016 — 2017: Second Observing Run

Binary black hole astrophysics, an international network of interferometers, and huge steps forward in multi-messenger astronomy

118, 22110

GW170608

All mass posteriors in context:

→ Heavier BBH more sensitive to total mass, not chirp mass

- \rightarrow LVT151012 weakest signal, large ambiguity
- → Volumetric sensitivity increases along the diagonal

Farr, et al. 2017 (Nature)

Assume various simple distributions of spin magnitude. Use these as proxies for low, high, and flat. Using existing observations, infer a virtual "population" giving rise to those distributions in *effective spin*.

Farr, et al. 2017 (Nature)

Assume various simple distributions of spin magnitude. Use these as proxies for low, high, and flat. Using existing observations, infer a virtual "population" giving rise to those distributions in *effective spin*.

Zevin, et al. 2017 (ApJ)

Similar statistical procedure, but use mass distributions to determine how many mass observations are required to confidently discern a given BH natal kick prescription

Kick Prescription:

Full: $v_{BH} = v_{NS}$ Fallback: $v_{BH} = (1-f) v_{NS}$ Proportional: $v_{BH} = M_{NS}/M_{BH} v_{NS}$

Distinguishability:

Cluster populations are very similar across prescriptions, so β becomes easier to measure — Kick disruption changes the mass population density and so some prescriptions (proportional) can be distinguished easier than others even with only mass

O2 Part 2

GW170817/GRB170817A, astrophysics with neutron stars

Time (seconds)

Binary dynamics is affected by the EoS through the **tidal deformation** of neutron stars

...but is highly subdominant... enters into the analytical phase expression used by searches and "PE" at **O((v/c)¹⁰)**

This is subordinate to the masses, mass ratio, spins, spin interactions, ...

More on EoS in talk by J. Read

GW170817

Updated plots in talk by B. Lackey

O1 BNS / NSBH Upper Limits

NSBH remain elusive, but expected to constrain models in the coming observing runs

2019 and beyond: towards design sensitivity

Future of gravitational-wave binary astrophysics

Extra Slides

GW Signal Detection Primer

Putative strain is embedded in detector noise — cross correlate the model with the data to extract a signal-tonoise ratio (SNR, ρ) statistic — this maximizes the likelihood (probability of signal vs probability of noise)

arxiv:1606.04856

GW Signal Detection Primer

Putative strain is embedded in detector noise — cross correlate the model with the data to extract a signal-tonoise ratio (SNR, ρ) statistic — this maximizes the likelihood (probability of signal vs probability of noise)

arxiv:1606.04856

Basic Terminology

$$\frac{d(t)}{d(t)} = n(t) + h(t)$$

observations: Putative strain from **gravitational wave** is embedded in **detector noise**

$$S(|f|) = 2\delta(f - f') \langle \tilde{n}(f)\tilde{n}(f') \rangle$$

Noise power spectrum: Autocorrelation of the noise in the frequency domain — "limiting factor" of the sensitivity of the instrument

$$(a|b) \equiv 2 \int_{\infty}^{\infty} \frac{\tilde{a}^{\star}(f)\tilde{b}(f)}{S(f)}$$

Noise weighted inner product: frequency-domain cross-correlation between two quantities

Null Hypothesis (H₀): Data samples are uncorrelated Gaussian noise with variance proportional to S(f)

$$p(H_0) \propto \exp(-(d|d)/2)$$

Alternative Hypothesis (H1): data are distributed as in null, *after* subtraction of the signal model (h)

$$p(H_1) \propto \exp(-(d-h|d-h)/2)$$

Inferred Rates / Probability of Astrophysical Origin

$$\mathscr{L} = \left\{ \prod_{i} \Lambda_{\rm bg} p_{\rm bg}(x_i) + \Lambda_{\rm fg} p_{\rm fg}(x_i) \right\} \exp(-\Lambda_{\rm bg} - \Lambda_{\rm fg})$$

Likelihood of obtaining ensemble of ranking statistics x_i with two categories of events: background (terrestrial) and foreground (astrophysical) $\Lambda_{fg,bg} \sim expected counts from each category$ p_{fg} , p_{bg} - modeled or measured, for astrophysical distribution of binaries p_{fg} $\sim \rho^{-4}$

34

arxiv:1302.5341

Inferred Rates / Probability of Astrophysical Origin

35

Astrophysics Implications

<u>Ap. JL. L22 2016</u>