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(SM)
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Fit in galaxy

Standard Model scale ~ 100 GeV

One Possibility: Same scale for Dark Matter?
Weakly Interacting Massive Particles (WIMPs)

WIMPs

Other Generic Candidates: Axions, Massive Vector Bosons

10-5 eV

(10 GHz)(yr-1)

How do we search for them?
This Talk: Bosons between 10 GHz - 10-7 Hz

Range includes popular candidates such as the QCD axion
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Today:
Random Field 

Correlation length 
~ 1/(ma v) 

Coherence Time
~ 1/(ma v2) 

~ 1 s (MHz/ma)

Spatially uniform, oscillating field

Detect effects of oscillating dark matter field

Resonance possible. Q ~ 106 (set by v ~ 10-3)
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What can the dark matter wind do?

Dark Matter

Oscillating Dark 
Matter Field 

(just like oscillating 
EM field from CMB)

Drive circuit

Spin Precession

Exert Force

What can a classical field do?

Change Fundamental Constants

a/c effect, narrow bandwidth around dark matter mass
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loop
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Cosmic Axion Spin Precession 
Experiment (CASPEr)

PRX 4 (2014) arXiv: 1306.6089 
PRD 88 (2013) arXiv: 1306.6088  
PRD 84 (2011)  arXiv: 1101.2691
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SQUID 
pickup 
loop

�Bext

�µ

Larmor frequency = axion mass ➔ resonant enhancement

CASPEr

axion “wind” ~va
OR ~E⇤

SQUID measures resulting transverse magnetization

NMR well established technology, noise understood, similar setup to previous experiments

Example materials: LXe, ferroelectric PbTiO3, many others

Axion affects physics of  nucleus, NMR is sensitive probe
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CASPEr-ZULF Results

10-4 nuclear polarization, 24 hr integration time
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B-L Dark Matter

Other than electromagnetism, only other anomaly free standard model current

oscillating E’ field
(dark matter)

can accelerate 
atoms

Protons, Neutrons, Electrons and Neutrinos are all charged  
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0µ � gJµ
B�LA

0
µ

Electrically neutral atoms are charged under B-L

Force experiments constrain g < 10-21

Force depends on net neutron number - violates equivalence 
principle. Dark matter exerts time dependent equivalence 

principle violating force!



The Relaxion
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Hierarchy problem solved through cosmic evolution - does not require any 

new physics at the LHC

� is a light scalar coupled to higgs with small coupling g
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Time variation of masses of fundamental particles

Force violates equivalence principle. Time dependent equivalence principle 
violation!



Detection Options
Measure relative acceleration between different elements/isotopes. 

Leverage existing EP violation searches and work done for 
gravitational wave detection

Ti Be

Force from dark matter causes
torsion balance to rotate

Measure angle, optical
lever arm enhancement

Torsion Balance

Dark Matter

Atom Interferometer

Differential 
free fall 

acceleration

Stanford Facility
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Pulsar Timing Arrays

Force by dark matter causes relative acceleration between Earth and 
Pulsar, leading to modulation of signal 

Pulsars are known to 
have stable rotation - can 

be used as clocks

Presently used to search 
for low frequency (100 

nHz) gravitational waves. 

Pulsar signal modulates 
due to gravitational wave 
passing between earth 

and the pulsar

Relaxion changes electron mass at location of Earth - changes clock 
comparison
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The Dark Matter Landscape

10-43 GeV 1048 GeV102 GeV 

(SM)

WIMPs

10-5eV

(100 GHz)

ADMX, CASPEr, DM Radio

10-22 eV

(yr-1)

Poor observational constraints on dark matter

Need to develop tools to cover full range of possibilities

Experiments under development can now search for dark matter 
particles with mass between 10-22 eV - 10-5 eV, using a variety of 

precision measurement tools


