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Standard Model scale ~ 100 GeV

Same scale for Dark Matter?
Weakly Interacting Massive Particles (VWIMPs)

WIMP Experiments: Sensitive up to 108 GeV

What if dark matter is super heavy?

Low number density - need large detectors.

Terrestrial: up to 1033 GeV
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3. Detection
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Ultra-heavy Dark Matter?

Large composite blob

Weak constraints on self-
Interactions of dark matter

Strong self-interactions in
dark sector

Efficient nucleosynthesis? Primordial production? Galactic
evolution?

Observational Effects?
Key Point: Lots of dark matter partons packed into single blob

Rare but potentially spectacular transit
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What does the blob look like!?

Self-Interaction Scale A, Parton Mass ~ A
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Fermionic Bosonic
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Observational Effects
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Short Range Long Range
T < Ap 1> Ap
Dark Matter scatters, Blob sources classical field
deposits energy.
Calorimetry

Use detectors of ultra-light

. dark matter
Compositeness could

enable multiple scattering
Leverage: C > Vdm > Vhuman

Constraints?
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Short Range

Scattering at the partonic level

Parton transfers momentum to blob

Form factor for g >> 1/ry ~ A

M >> mn, kinematics set by mn

q d = Min[mnv, A]

Key Point: A <300 keV => soft energy transfer, no ionization

This Work: 10 keV <A <10 MeV

Goal: Robust parameter space, targeted experimental signals
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Short Range: Bosonic Blob

R~1/A

10 keV<A<10 MeV =>q~1/R

Cross-section Coherently Enhanced

X ——> N Easily geometric o = 1/A?

dE A? 1 Nm
— =7, | — | —= = — ~ keV
dr (mN> A2 mpy eV/em

Form depends on A - ionize for A > 300 keV, heat below that
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Short Range: Fermionic Blob

R ~ N13/A

Coherent enhancement only for soft
scattering => low energy deposition

Lots of partons => multiple
scattering possible
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Form depends on A - ionize for A > 300 keV, heat below that
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Long Range
Take Range 1/ >> Blob size R

Blob sources classical field gy N/r

Exerts Force

Energy Loss in Medium due to dynamical friction
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Long Range

Exerts Force

1 3
_ m I3 2 v
gNONN (jl—E ~ 27?/ drrn,my ( (r) i) X (—)
L 0

(when adiabatic)

Causes Spin Precession
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Induces Strain
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Constraints

Bullet Cluster Bounds.

. . For short range, no constraints on bosons.

Not relevant if blob < 10 percent of dark matter

Blob - baryon friction bounded by BAO. Not a
significant constraint.

No instability from ¢
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Energy Threshold: 6 MeV/cm
+
Scintillation

Mediator coupling to Standard Model constrained by new force
searches, astrophysical bounds on light particles, collider limits
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lonization
(A > 300 keV)
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MACRO=> dE/dx < 6 MeV/cm

Huge Volume?

& i

Hydrophones: dE/dx ~ keV/A

Detection

Short Range

Acoustic
(A <300 keV)

Low threshold calorimeter like
CDMS

Line of hot cells

Energy depositions ~ keV/cm
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Detection
Long Range
Rare Transit of Heavy

Dark Matter Classical field created by dark matter -
correlated excitation of multiple detectors

Same class of effects as light dark matter -
excitation of currents, spin precession, acceleration,
variation of fundamental constants

Instead of continuous, coherent a/c effect, look for
correlated transients in network

Up to dark matter mass ~ 108 gm
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Fermion Constituents with TeV Scale Mediator
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MeV Fermion Constituents and 6000 km PseudoScalar Mediator
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bosonic WIMPs
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Poor observational constraints on dark matter

Current Experimental Concepts can probe region from 108 GeV
- 1033 GeV

Possible to probe above 1033 GeV using astrophysical systems -
particularly white dwarfs



