Searching for Ultra-Heavy Dark Matter

Surjeet Rajendran, UC Berkeley

(with Dorota Grabowska and Tom Melia)

10-43 GeV

10⁴⁸ GeV

Standard Model scale ~ 100 GeV

Same scale for Dark Matter?
Weakly Interacting Massive Particles (WIMPs)

Standard Model scale ~ 100 GeV

Same scale for Dark Matter?
Weakly Interacting Massive Particles (WIMPs)

WIMP Experiments: Sensitive up to 1018 GeV

Standard Model scale ~ 100 GeV

Same scale for Dark Matter?
Weakly Interacting Massive Particles (WIMPs)

WIMP Experiments: Sensitive up to 1018 GeV

What if dark matter is super heavy?

Low number density - need large detectors.

Terrestrial: up to 10³³ GeV

Outline

- 1. Theory and Phenomenology
- 2. Constraints
- 3. Detection

Large composite blob

Weak constraints on selfinteractions of dark matter

Strong self-interactions in dark sector

Large composite blob

Weak constraints on selfinteractions of dark matter

Strong self-interactions in dark sector

Efficient nucleosynthesis? Primordial production? Galactic evolution?

Large composite blob

Weak constraints on selfinteractions of dark matter

Strong self-interactions in dark sector

Efficient nucleosynthesis? Primordial production? Galactic evolution?

Observational Effects?

Large composite blob

Weak constraints on selfinteractions of dark matter

Strong self-interactions in dark sector

Efficient nucleosynthesis? Primordial production? Galactic evolution?

Observational Effects?

Key Point: Lots of dark matter partons packed into single blob

Rare but potentially spectacular transit

Self-Interaction Scale Λ , Parton Mass $\sim \Lambda$

Self-Interaction Scale Λ , Parton Mass $\sim \Lambda$

Self-Interaction Scale Λ , Parton Mass $\sim \Lambda$

Fermionic

Bosonic

$$R \sim \left(\frac{M}{\Lambda}\right)^{\frac{1}{3}} \frac{1}{\Lambda}$$

Self-Interaction Scale Λ , Parton Mass $\sim \Lambda$

Fermionic

$$R \sim \left(\frac{M}{\Lambda}\right)^{\frac{1}{3}} \frac{1}{\Lambda}$$

$$R \sim \frac{1}{\Lambda}$$

Self-Interaction Scale Λ , Parton Mass $\sim \Lambda$

Fermionic

Bosonic

$$R \sim \left(\frac{M}{\Lambda}\right)^{\frac{1}{3}} \frac{1}{\Lambda}$$

$$\mathcal{L} \supset g_{\chi} \phi \bar{\chi} \chi$$

$$R \sim \frac{1}{\Lambda}$$

$$\mathcal{L} \supset g_{\chi} \Lambda \phi \chi^* \chi$$

Self-Interaction Scale Λ , Parton Mass $\sim \Lambda$

Fermionic

Bosonic

$$R \sim \left(\frac{M}{\Lambda}\right)^{\frac{1}{3}} \frac{1}{\Lambda}$$

$$\mathcal{L} \supset g_{\chi} \phi \bar{\chi} \chi$$

$$R \sim \frac{1}{\Lambda}$$

$$\mathcal{L} \supset g_{\chi} \Lambda \phi \chi^* \chi$$

Standard Model Interactions

$$+\mu^2\phi^2 + g_N\phi\bar{N}N + \frac{1}{f_a}\partial_\nu\phi\bar{N}\gamma^\nu\gamma_5N + \frac{\phi}{\alpha M}F_{\mu\nu}F^{\mu\nu}$$

Dark Matter scatters, deposits energy.

Calorimetry

Compositeness could enable multiple scattering

Dark Matter scatters, deposits energy.

Calorimetry

Compositeness could enable multiple scattering

Blob sources classical field

Use detectors of ultra-light dark matter

Dark Matter scatters, deposits energy.

Calorimetry

Compositeness could enable multiple scattering

Blob sources classical field

Use detectors of ultra-light dark matter

Leverage: c > V_{dm} > V_{human}

Constraints?

Scattering at the partonic level

Parton transfers momentum to blob

Scattering at the partonic level

Parton transfers momentum to blob

Form factor for $q \gg 1/r_{\chi} \sim \Lambda$

 $M >> m_N$, kinematics set by m_N

 $q = Min[m_N v, \Lambda]$

Scattering at the partonic level

Parton transfers momentum to blob

Form factor for $q \gg 1/r_{\chi} \sim \Lambda$

 $M >> m_N$, kinematics set by m_N

 $q = Min[m_N v, \Lambda]$

Key Point: $\Lambda < 300 \text{ keV} => \text{soft energy transfer, no ionization}$

Scattering at the partonic level

Parton transfers momentum to blob

Form factor for $q \gg 1/r_{\chi} \sim \Lambda$

 $M >> m_N$, kinematics set by m_N

 $q = Min[m_N v, \Lambda]$

Key Point: $\Lambda < 300 \text{ keV} => \text{soft energy transfer, no ionization}$

This Work: $10 \text{ keV} < \Lambda < 10 \text{ MeV}$

Goal: Robust parameter space, targeted experimental signals

Short Range: Bosonic Blob

 $R \sim 1/\Lambda$

 $10 \text{ keV} < \Lambda < 10 \text{ MeV} => q \sim 1/R$

Cross-section Coherently Enhanced

Easily geometric $\sigma = 1/\Lambda^2$

Short Range: Bosonic Blob

 $R \sim 1/\Lambda$

 $10 \text{ keV} < \Lambda < 10 \text{ MeV} => q \sim 1/R$

Cross-section Coherently Enhanced

Easily geometric $\sigma = 1/\Lambda^2$

$$\frac{dE}{dx} = \eta_m \left(\frac{\Lambda^2}{m_N}\right) \frac{1}{\Lambda^2} = \frac{\eta_m}{m_N} \sim \text{keV/cm}$$

Short Range: Bosonic Blob

 $R \sim 1/\Lambda$

10 keV $< \Lambda <$ 10 MeV $=> q \sim 1/R$

Cross-section Coherently Enhanced

Easily geometric $\sigma = 1/\Lambda^2$

$$\frac{dE}{dx} = \eta_m \left(\frac{\Lambda^2}{m_N}\right) \frac{1}{\Lambda^2} = \frac{\eta_m}{m_N} \sim \text{keV/cm}$$

Form depends on Λ - ionize for $\Lambda > 300$ keV, heat below that

Short Range: Fermionic Blob

 $R \sim N^{1/3}/\Lambda$

Coherent enhancement only for soft scattering => low energy deposition

Lots of partons => multiple scattering possible

Short Range: Fermionic Blob

 $R \sim N^{1/3}/\Lambda$

Coherent enhancement only for soft scattering => low energy deposition

Lots of partons => multiple scattering possible

$$\frac{dE}{dx} = \eta_m \left(\frac{M}{\Lambda}\right) \left(\frac{g_\chi^2 g_N^2 m_N^2}{\mu^4}\right) \left(\frac{\Lambda^2}{m_N^2 v_x^2}\right) \left(\frac{\Lambda^2}{m_N}\right)$$

Form depends on Λ - ionize for $\Lambda > 300$ keV, heat below that

Take Range $1/\mu \gg$ Blob size R

Blob sources classical field g_X N/r

Take Range $1/\mu \gg$ Blob size R

Blob sources classical field g_X N/r

 $g_N\phiar{N}N$

Exerts Force

Energy Loss in Medium due to dynamical friction

$$\frac{dE}{dx} \sim 2\pi \int_0^{\frac{1}{\mu}} dr r \eta_m m_N \left(\frac{F(r)}{m_N} \frac{r}{v}\right)^2$$

Take Range 1/μ >> Blob size R

Blob sources classical field g_X N/r

Exerts Force

Energy Loss in Medium due to dynamical friction

$$\frac{dE}{dx} \sim 2\pi \int_0^{\frac{1}{\mu}} dr r \eta_m m_N \left(\frac{F(r)}{m_N} \frac{r}{v}\right)^2 \times \left(\frac{v}{c_s}\right)^3$$

(when adiabatic)

$$g_N\phi ar{N}N$$

Exerts Force

$$g_N\phi\bar{N}N \qquad \qquad \frac{dE}{dx} \sim 2\pi \int_0^{\frac{1}{\mu}} dr r \eta_m m_N \left(\frac{F\left(r\right)}{m_N}\frac{r}{v}\right)^2 \times \left(\frac{v}{c_s}\right)^3 \qquad \qquad \text{(when adiabatic)}$$

$$\frac{1}{f_a}\partial_{\nu}\phi\bar{N}\gamma^{\nu}\gamma_5 N \blacktriangleleft$$

Causes Spin Precession

$$\delta heta \sim rac{g_{\chi} N}{f_a r v}$$

Long Range

$$g_N\phi ar{N}N$$

Exerts Force

$$g_N\phi \bar{N}N$$
 \prec $\frac{dE}{dx}\sim 2\pi\int_0^{\frac{1}{\mu}}drr\eta_m m_N\left(\frac{F\left(r\right)}{m_N}\frac{r}{v}\right)^2\times\left(\frac{v}{c_s}\right)^3$ (when adiabatic)

$$\frac{1}{f_a}\partial_{\nu}\phi\bar{N}\gamma^{\nu}\gamma_5 N \blacktriangleleft$$

Causes Spin Precession

$$\delta \theta \sim \frac{g_{\chi} N}{f_a r v}$$

$$\frac{\phi}{\alpha M} F_{\mu\nu} F^{\mu\nu} \blacktriangleleft$$

Induces Strain

$$h \sim \frac{g_{\chi}N}{rM}$$

Bullet Cluster Bounds. For short range, no constraints on bosons.

Not relevant if blob < 10 percent of dark matter

Bullet Cluster Bounds. For short range, no constraints on bosons.

Not relevant if blob < 10 percent of dark matter

Blob - baryon friction bounded by BAO. Not a significant constraint.

Bullet Cluster Bounds. For short range, no constraints on bosons.

Not relevant if blob < 10 percent of dark matter

Blob - baryon friction bounded by BAO. Not a significant constraint.

No instability from φ

$$g_{\chi} \lessapprox \frac{1}{\sqrt{N}}$$

$$g_{\chi} \lesssim \frac{1}{N^{\frac{1}{3}}}$$

(bosonic)

(fermionic)

MACRO Monopole Search (~80 x 10 x 10 m³)

Energy Threshold: 6 MeV/cm + Scintillation

MACRO Monopole Search (~80 x 10 x 10 m³)

Energy Threshold: 6 MeV/cm + Scintillation

Mediator coupling to Standard Model constrained by new force searches, astrophysical bounds on light particles, collider limits

Detection Short Range

Ionization $(\Lambda > 300 \text{ keV})$

MACRO=> dE/dx < 6 MeV/cm

Short Range

Ionization $(\Lambda > 300 \text{ keV})$

MACRO=> dE/dx < 6 MeV/cm

Huge Volume?

Hydrophones: dE/dx ~ keV/A

Short Range

Ionization $(\Lambda > 300 \text{ keV})$

MACRO=> dE/dx < 6 MeV/cm

Low threshold calorimeter like **CDMS**

Huge Volume?

Line of hot cells

Energy depositions ~ keV/cm

Hydrophones: dE/dx ~ keV/A

Detection
Long Range

Long Range

Rare Transit of Heavy
Dark Matter

Classical field created by dark matter - correlated excitation of multiple detectors

Same class of effects as light dark matter - excitation of currents, spin precession, acceleration, variation of fundamental constants

Long Range

Rare Transit of Heavy
Dark Matter

Classical field created by dark matter - correlated excitation of multiple detectors

Same class of effects as light dark matter - excitation of currents, spin precession, acceleration, variation of fundamental constants

Instead of continuous, coherent a/c effect, look for correlated transients in network

Up to dark matter mass ~ 108 gm

Reach

Reach

MeV Fermion Constituents and 6000 km PseudoScalar Mediator

The Dark Matter Landscape

Poor observational constraints on dark matter

Current Experimental Concepts can probe region from 10¹⁸ GeV - 10³³ GeV

Possible to probe above 10³³ GeV using astrophysical systems - particularly white dwarfs