

Neutrinos from Decay-At-Rest

Daniel Winklehner, MIT CIPANP2018, Palm Springs, CA, 05/31/2018

Some Important Parameter Spaces

Purity

Energy

Intensity

- In devising a new experiment, one might be interested in these three parameter spaces:
 - Purity
 - Pure u_x
 - Devoid of u_x
 - Well understood spectrum
 - Intensity
 - Statistics
 - S/N
 - Energy
 - Specific energy \rightarrow L/E
 - Low energy spread
 - Etc.
- Decay-At-Rest can provide high Intensity, high purity and a well-understood (low-) energy spectrum...

Outline

- Decay-At-Rest Overview
- (A few) Experiments
 - · COHERENT
 - •JSNS²
 - KPipe
 - DAESALUS
 - · ISODAR
- IsoDAR: The Anatomy of a Cyclotron Proton Dríver

Decay-At-Rest Processes

Decay-At-Rest - Four Types **Purity** $\xrightarrow{} \nu_e \\ \pi^+ \to \mu^+ \to e^+$ **PiDAR MuDAR** $ightarrow
u_{\mu}
ightarrow ar{
u}_{\mu}$ $K^+ \to \mu^+ + \nu_\mu$ **K**+ KDAR $^{A}_{Z+1}X' \rightarrow ^{A}_{Z}X + e^{-} + \bar{\nu}_{e}$ **IsoDAR**

Decay-At-Rest - Production

• Either by protons impinging on a target (Pi/Mu/KDAR)

 Or by neutron capture and subsequent beta-decay (IsoDAR) e.g.:

proton
$$\rightarrow {}^{9}\text{Be} \rightarrow n \rightarrow \text{captures on } {}^{7}\text{Li} \rightarrow {}^{8}\text{Li} \rightarrow \bar{\nu}_{e}$$

Intensity

Decay-At-Rest - Production

Either by protons impinging on a target (Pi/Mu/KDAR)

 Or by neutron capture and subsequent beta-decay (IsoDAR) e.g.:

Intensity

CIPANP2018

Decay-At-Rest - Detection

- In order to detect neutrinos we must decide:
 - The flavor(s) we are looking for
 - The type of interaction \rightarrow Charged Current (CC) and Neutral Current (NC)
- Some examples of low energy interaction open to DAR neutrinos
 - NC: Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)
 - CC: At typical DAR-energies, $\bar{\nu}_e$ interact through Inverse Beta Decay (IBD):

 $\bar{\nu}_e + p^+ \rightarrow e^+ + n$

Want large number of protons available ightarrow

- Scintillator
- Gd-doped water-Cherenkov detector
- CC: $\nu_{\mu} + {}^{12}C \rightarrow \mu^{-} + X$ in Liquid Scintillator (signal from prompt μ^{-} and final state proton + delayed Michel electron)

KamLAND

Decay-At-Rest - Advantages

PiDAR/MuDAR/IsoDAR

- Known energy shape
- Low Energy is nice:

- Coherent scattering cross-section is high (compared to other interactions)
- (L/E-dependent) oscillation studies
- IBD cross-section (for $\bar{\nu}_e$ applications) is well known
- IBD events (for $\bar{\nu}_e$ applications) are easy to record/ID
- Backgrounds can be controlled/understood
- Sometimes come for free in existing facility (e.g. SNS, MLF)
 KDAR
- 236 MeV u_{μ} , low u_{e} background
- Sometimes come for free in existing facility (e.g. MLF)

Decay-At-Rest - Challenges

- Isotropic → Lose much
 in unfavorable direction...
- Need very intense proton source!
- Target design (cooling, activation \rightarrow maintenance) is issue!
- There are a number of existing facilities, e.g.:
 - Spallation Neutron Source at Oak Ridge (SNS)
 - J-PARC Materials and Life Sciences Experimental Facility (MLF)
- In the second half of this talk, I will present you with another possibility: Cyclotrons

Intensity

Target (dump)

(Proposed) Experiments

COHERENT

- Talks during this meeting:
 - Plenary this morning by Kate Scholberg
 - Next talk in this session by Ivan Tolstukhin [264]
- In a nutshell:
 - Uses neutrinos from PiDAR/MuDAR at Oakridge SNS to measure Coherent Elastic Neutrino Nucleus Scattering (CEvNS)

$$\nu_{\mu} + {}^{\mathrm{A}}_{\mathrm{Z}}\mathrm{X} \rightarrow \nu_{\mu} + {}^{\mathrm{A}}_{\mathrm{Z}}\mathrm{X}$$

- Several detector in a hallway below target dubbed "neutrino alley"
 - Has been measured to have low neutron background
 - 8 mwe overburden

• Just recently made the very first measurement of CEvNS in CsI:

http://science.sciencemag.org/content/early/2017/08/02/science.aao0990

- LSND is THE experiment that drives the high-Δm² anomalies. J-PARC's MLF and ORNL's SNS are the best (only) places to directly study the LSND anomaly.
- Uses PiDAR/MuDAR to test LSND anomaly in a cost-effective and timely way at J-PARC
- Aside: KDAR: Collect a large sample (~50k) of mono-energetic 236 MeV muon neutrinos from KDAR for nuclear probe and crosssection measurements.
- Production:

Detection:

- Target volume is Gd-loaded liquid scintillator
- 24 m from neutrino source
- Phase 0: 17 tons w/ 193 x 8" PMTs
- Future phase: multi-detector (34 t)
- Energy resolution $\approx 15\%/\sqrt{E({\rm MeV})}$
- Measures $\bar{\nu}_e$ appearance through IBD: $\bar{\nu}_e + p^+ \rightarrow e^+ + n$

Detection:

- Target volume is Gd-loaded liquid scintillator
- 24 m from neutrino source
- Phase 0: 17 tons w/ 193 x 8" PMTs
- Future phase: multi-detector (34 t)
- Energy resolution $\approx 15\%/\sqrt{E({\rm MeV})}$
- Measures $\bar{\nu}_e$ appearance through IBD: $\bar{\nu}_e + p^+ \rightarrow e^+ + n$

Expecting first results early next year! See talk by Joshua Spitz in NMNM tomorrow [301]

- Use 236 MeV u_{μ} from KDAR
- L/E: With long detector (100-120 meters), filled with liquid scintillator, one can contain oscillation period for $\nu_{\rm S}$ with mass splitting >1 eV²
- To keep cost down, use industrial plastic chemical storage containers for vessel and instrument with 0.6% photocoverage (120k SiPM's)
- Can do this since high-energy resolution not required

- Trace out oscillation curve in long detector
- High precision ν_{μ} disappearance search with minimal systematic uncertainties from cross-section and flux
- Cost: 5 M\$, Decisive in 6 years of running.

Signal:

Sensitivities:

DAESALUS

DAESALUS/ISODAR

Search for sterile neutrinos through oscillations at short distances and low energy

ISODAR

- High Statistics
- Well-understood beam
 - ⁸Li is virtually the only contributor to neutrino production

CIPANP2018

- 0.016 neutrinos per incoming proton
- Fairly Compact neutrino source
 - Sleeve yields production volume ~ $\sigma_x = \sigma_v = 23$ cm, $\sigma_z = 37$ cm
- KamLAND detector resolution:
 - Vertex: $12 \text{ cm}/\sqrt{\text{E(MeV)}}$
 - Energy: $6.4 \ \%/\sqrt{\mathrm{E(MeV)}}$
- Conceptual Design Reports: https://arxiv.org/abs/1511.05130 https://arxiv.org/abs/1710.09325
- Working on Technical Design Report

ISODAR - A New Opportunity

CHANDLER - Carbon Hydrogen Anti-Neutrino Detector with a Lithium Enhanced ROL

PVT Scintillator blocks with ⁶Li neutron capture sheets coupled to ZnS scintillator \Rightarrow High efficiency IBD neutrino detector.

CHANDLER/SoLid at the BR2 Reactor in Belgium

- BR2 is 60 MW research reactor
- Compact well-shielded core (d ~ 50cm)
- High flux (~1019 ν /s) from highly enriched 235U fission products
- Reactor hall allows baselines from 5.5m to 10m

https://arxiv.org/abs/1303.3011

ISODAR + CHANDLER

- Each block is 2.2³ m³
- 10 ton/block
- 10 blocks = 100 tons
- Three options:
 - IsoDAR + KamLAND
 - IsoDAR + CHANDLER
 - IsoDAR + Both

Cyclotron Proton Driver

ISODAR Driver: Overview

- Desired: 10 mA of p⁺ on target
- Greatest Challenge: Space Charge
- H₂⁺ as mitigation. 5 mA H₂⁺ become 10 mA of p⁺ after stripping

Driver

Ion Source, LEBT, Cyclotron

- Based on: Ehlers and Leung: <u>http://aip.scitation.org/doi/10.1063/1.1137452</u>
- Currently commissioning at MIT

ISODAR Driver: LEBT

- Two options:
 - Conventional Low Energy Beam Transport (demonstrated experimentally) <u>http://iopscience.iop.org/article/10.1088/1748-0221/10/10/T10003/pdf</u>
 - Better: RFQ-Direct Injection Project (RFQ-DIP); NSF funded at ~1 M\$
 - Why?
 - Highly efficient bunching
 - sorts out protons
 - accelerates to injection energy of 70 keV
 - Compact (good for underground)
 - Parameters:
 - 32.8 MHz
 - 1.3 m length, 30 cm diameter
 - 15 keV to 70 keV accel
 - <55 kV vane voltage

http://dx.doi.org/10.1063/1.4935753

ISODAR Dríver: Cyclotron II

- Acceleration & Extraction. Space-charge again...
- Septum can tolerate about 200 W of controlled beam loss.
- If turn separation is small halo formation is large \rightarrow big problem.
- Space-charge + Isochronous, AVF cyclotron = Vortex motion. Good!
- Needs to be carefully matched, though!

ISODAR Dríver: Cyclotron III

- Acceleration & Extraction. Space-charge again...
- Septum can tolerate about 200 W of controlled beam loss.
- If turn separation is small halo formation is large \rightarrow big problem.
- Space-charge + Isochronous, AVF cyclotron = Vortex motion. Good!
- Needs to be carefully matched, though! + Collimators

ISODAR Driver: Target 1

COLUMBIA UNIVERSITY

- Beryllium target with lithium-beryllium sleeve
- 600 kW painted across face ~ 16 cm diameter (~3 kW/cm²)
- Considerable progress on optimization of shape and Li-Be mixture

ISODAR Driver: Target II

COLUMBIA UNIVERSITY

NSF funded target study on the way at Columbia University!

Daniel Winklehner - MIT

CIPANP2018

ISODAR - Current Status

- Full Proposal due in fall 2018 (NSF encouraged)
- Path to proposal:
 - Conventional Facilities CDR in collaboration with KamLAND
 - Determine siting at KamLAND (new option came up!)
 - Full set of start-to-end simulations (have all the parts)
 - Frozen proton driver design
- In parallel: RFQ-DIP. First ever demonstration of direct injection from RFQ into compact cyclotron \rightarrow Will determine path for LEBT

Daniel Winklehner - MIT

CIPANP2018

Conclusion / Outlook

- Decay-At-Rest presents some great opportunities!
- As for example demonstrated by COHERENT
- •JSNS² will have first data by the end of 2018
- In addition there are several proposals in various design stages:
 - KPipe
 - · DAESALUS
 - · ISODAR
- Cyclotrons are a possible alternative for proton driver
- Full proposal for IsoDAR to be submitted to NSF this fall....stay tuned!

RFQ General Principle

Beam

 $\longleftarrow L = \beta \lambda \longrightarrow$

$$\mathbf{V}(t) = \mathbf{V}_{\max} \cdot \cos(\omega_{\mathrm{RF}} \cdot t - \Phi_S)$$

- Continuous focusing like in a series of alternating F/D Electrostatic quadrupoles
- Wiggles lead to acceleration and bunching (RF bunching similar to cyclotron)
- Same frequency as cyclotron

RFQ General Principle

Beam

40

Vortex Motion Principle

Courtesy of Wiel Kleeven (Cyclotrons 2016)

Vortex Motion PSI Injector II

- If the beam is initially well matched, it curls up into a tight ball with only a bit of halo.
- It is circular in x-y (mid plane of cyclotron)
- This has been seen at PSI Injector II and reproduced in OPAL:

Vortex Motion ISODAR/DIC

• Starting at 1.5 MeV/amu (JJ.Yang 2012) a nice round beam shape develops

Vortex Motion in the ISODAR Cyclotron

- Starting at 192 keV/amu (within the first turn) (J. Jonnerby, 2016)
- Vortex motion happens for our H₂⁺ beam
- Beam separation not yet fully sufficient, but work in progress

Kpipe - Background:

fraction of events

- Small outer-veto layer
- beam-timing
- two-pulse signal
- reduce cosmic ray background rate

JSNS² - Spectrum & Sensítívíty

Status:

- Obtained Stage 1 (of 2) approval from PAC in 2015
- Secured funding for first 17 ton detector module in 2016
- Submitted TDR to J-PARC PAC (seeking Stage 2 approval) in 2017
- Construction has begun! They expect first data in late-2018