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Current status of nuclear forces 
from chiral EFT



 From QCD to nuclei

QCD

effective chiral Lagrangian 

nuclear forces and currents

nuclear structure and dynamics

symmetries (especially the chiral symmetry);
lost of information (LECs)

integrate out                          (but retain               ):
Chiral Perturbation Theory

ab initio many-body methods:
lattice, FY, NCSM,…
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 Chiral Effective Field Theory
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Effective Lagrangian:

GB dynamics
Weinberg, Gasser, Leutwyler, …  

πN dynamics
Bernard-Kaiser-Meißner et al. Chiral Perturbation Theory

Q = momenta of particles or Mπ  ~ 140 MeV
breakdown scale Λb



Weinberg, van Kolck, Kaiser, EGM, …  
Nuclear forces

Park et al, Bochum-Bonn, JLab-Pisa
Nuclear currentsAuxilliary quantities (not observable):

More difficult to calculate than Feynman graphs 
(renormalizability, off-shell consistency…)
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Effective Lagrangian:

GB dynamics
Weinberg, Gasser, Leutwyler, …  

πN dynamics
Bernard-Kaiser-Meißner et al. Chiral Perturbation Theory

Q = momenta of particles or Mπ  ~ 140 MeV
breakdown scale Λb



 Chiral expansion of the nuclear forces [W-counting]
Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Weinberg ’90

Ordonez, van Kolck ’92

Ordonez, van Kolck ’92

Kaiser ’00 - ‘02

van Kolck ’94;  EE et al. ’02

Bernard, EE, Krebs, Meißner,’08, ’11 EE ’06

Entem, Kaiser, Machleidt, Nosyk ’15
EE, Krebs, Meißner ’15

Girlanda, Kievsky, Viviani ’11
Krebs, Gasparyan, EE ’12,’13

(short-range loop contrib. still missing)

still have to be worked out

[parameter-free] [parameter-free]

— Much more involved than just calculating Feynman diagrams…
— A similar program is being pursued for in chiral EFT with explicit Δ(1232) DOF



single-nucleon two-nucleon three-nucleon

Q-3

Q-1

Q0

Q1

depend on d8, d9, d18, d21, d22,
no 1/m corrections… 

parameter-free

depend on C2, C4, C5, C7 + L1, L2; 
no loop corrections depend on CT

parameter-free static two-pion exchange

parameter-free

 Electromagnetic currents
Chiral expansion of the electromagnetic current and charge operators 

ci

1/m

di

ei

Our results differ from the ones 
of  the  JLab-Pisa  group
(Pastore et al., 08-11)

Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502; 
                                                 PRC 86 (12) 047001

Krebs, EE, Meißner, to appear



single-nucleon two-nucleon three-nucleon

Q-3

Q-1

Q0

Q1

depend on d2, d5, d6, d15-2d23,
no 1/m corrections… 

parameter-free

parameter-free; 
only tree-level 1/m-corr. survive

depend on z1, …, z4;
no loop corrections

parameter-free static two-pion exchange

parameter-free

parameter-free (depend on the known CT)

 Axial currents
Chiral expansion of the axial current and charge operators 

cDci

1/m

Comparison with Baroni et al. (TOPT) 

— different results for π-exchange
     current contributions 
— differences in tree-level 1π-terms

— looked only at irred. 3N graphs 

— didn’t consider 1/m-corrections 
     at order Q1 

Krebs, EE, Meißner, Annals Phys. 378 (2017) 317

For more details: 
review article by Hermann Krebs 

(in preparation)



 
A new generation of accurate & precise

chiral NN potentials 

— semi-local, coordinate-space-regularized up to N4LO

— semi-local, momentum-space-regularized up to N4LO+

— nonlocal, momentum-space-regularized up to N4LO+

EE, Krebs, Meißner, EPJA 51 (2015) 53; PRL 115 (2015) 122301

Reinert, Krebs, EE, EPJA 54 (2018) 88

Entem, Machleidt, Nosyk, PRC 96 (2017) 024004

Other chiral EFT interactions on the market: 
local potentials up to N2LO [Gezerlis et al. ’14]; minimally nonlocal N3LO potential including N2LO Δ(1232) 
contributions [Piarulli et al.’15]; N2LO potentials tuned to heavier nuclei [Ekström, Carlsson et al.] …
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The long and short of nuclear forces



 The long and short of nuclear forces

Short-range interactions have to be tuned to experimental data. In the isospin 
limit, one has according to NDA:

LO [Q0]:
NLO [Q2]:

N3LO [Q4]:

2 operators (S-waves)
+ 7 operators (S-, P-waves and ε1)

+ 12 operators (S-, P-, D-waves and ε1, ε2) 
N4LO [Q5]: no new terms

N2LO [Q3]: no new terms



 The long and short of nuclear forces

Short-range interactions have to be tuned to experimental data. In the isospin 
limit, one has according to NDA:

LO [Q0]:
NLO [Q2]:

N3LO [Q4]:

2 operators (S-waves)
+ 7 operators (S-, P-waves and ε1)

+ 12 operators (S-, P-, D-waves and ε1, ε2) 
N4LO [Q5]: no new terms

N2LO [Q3]: no new terms

Nuclear χEFT in the Precision Era Evgeny Epelbaum

πN scattering 2π-exchange 

NN force

long- and intermediate-range parts of the 3NF

Figure 2: The long-range part of the nuclear force is completely predicted by the chiral symmetry
of QCD and experimental information on the pion-nucleon system.

part of the interaction and thus maintains the analytic structure of the amplitude in the low-energy
domain. This feature is in contrast with the non-local momentum-space regulator employed in the
first-generation NN potentials of Refs. [47, 48] of the type

V (p⃗, p⃗ ′)→V reg(p⃗, p⃗ ′) =V (p⃗, p⃗ ′)exp
(

−
p2n+ p′2n

Λ2n

)

, n= 2,3 , (2.7)

where p⃗, p⃗ ′ are the initial and final momenta of the nucleons in the center of mass system (CMS),
which distorts the long-range part of the interaction. Another advantage of the regulator in Eq. (2.5)
is that it cuts off precisely the undesired short-range components of the pion exchange contributions
which cannot be meaningfully predicted in chiral EFT instead of their large-momentum parts as
does the non-local regulator in Eq. (2.7). This makes the additional spectral-function regularization
(SFR) [75] of the two-pion exchange components, which was used e.g. in Refs. [48, 76] to tame
the unphysically strong attraction at short distances at N2LO [41], obsolete. This is a particularly
welcome feature in view of the ongoing and upcoming 3NF studies, in which the implementation
of the SFR would be rather non-trivial. The insensitivity of the calculated NN observables to the
value of the exponent in Eq. (2.5) is demonstrated in [18]. For contact interactions, we used in
Refs. [18, 19] a non-local Gaussian regulator in momentum space with the cutoff set to Λ= 2/R.

2.3 Determination of the LECs

I am now in the position to specify the employed values of the various LECs and begin with
the long-range part of the potential due to exchange of pion(s). Here, the framework of chiral
EFT shows its full power by allowing one to predict the long-range part of the nuclear force in a
parameter-free way using the available experimental information on the pion-nucleon system and
exploiting the constraints due to the chiral symmetry of QCD as visualized schematically in Fig. 2.
At orders N2LO, N3LO and N4LO, one needs to specify the values of the order-Q2, order-Q3 and
order-Q4 πN LECs ci, di and ei, respectively. At N2LO and N3LO, we used in [18] the values
of c1 = −0.81, c2 = 3.28, c3 = −4.69, c4 = 3.40, d̄1 + d̄2 = 3.06, d̄3 = −3.27, d̄5 = 0.45 and
d̄14 − d̄15 = −5.65 from the order-Q3 fits to πN data in the physical region [77] and inside the
Mandelstam triangle [78]. Further, the LEC d18 is adjusted to reproduce the observed value of the
Goldberger-Treiman discrepancy. Here and in the following, the values of the LECs are given in
units of GeV−n. The bars over the LECs indicate that I am using the convention of Ref. [77] by
setting the dimensional regularization scale equal to the pion mass. At N4LO, we employ the values
from our order-Q4 fit to Karlsruhe-Helsinki partial-wave analysis of πN scattering [55], namely:
c1 =−0.75, c2 = 3.49, c3 =−4.77, c4 = 3.34, d̄1+ d̄2 = 6.21, d̄3 =−6.83, d̄5 = 0.78, d̄14− d̄15 =
−12.02, ē14 = 1.52 and ē17 =−0.37. These values are in a reasonable agreement with the ones of
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The long-range part of nuclear forces and currents is completely determined by  
the chiral symmetry of QCD + experimental information on πN scattering

predicted in a parameter-free way



 Determination of πN LECs
H. KREBS, A. GASPARYAN, AND E. EPELBAUM PHYSICAL REVIEW C 85, 054006 (2012)
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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 Determination of πN LECs

Matching ChPT to πN Roy-Steiner equations

πN scattering, 
physical region

χ expansion of the πN amplitude expected to 
converge best within the Mandelstam triangle

Hoferichter, Ruiz de Elvira, Kubis, Meißner, PRL 115 (2015) 092301

Closer to the kinematics relevant for nuclear 
forces…

NN potential

Subthreshold coefficients (from RS analysis) 
provide a natural matching point to ChPT

subthreshold 
expansion
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.

054006-8

Pion-nucleon scattering up to Q4 in heavy-baryon ChPT

Order Q4:

Order Q3:

Order Q2:

Order Q:
� �i/�

n
⇥, �i = O(1)

Le� = L� + L�N

ci di ei

LEC N2LO fits ⌅ + ⇤ + ⌃

C̃res
1S0 �(0.12 . . . 0.16) �0.12

Cres
1S0 (1.16 . . . 1.37) 1.28

C̃res
3S1 �(0.13 . . . 0.16) �0.10

Cres
3S1 (0.42 . . . 0.72) 0.66

Cres
�1 �(0.36 . . . 0.47) �0.41

LEC Fit value Fit value

g1 1.37 ± 0.30 2.27 (fixed)

b3 [GeV�1] 1.76 ± 0.95 1.79 ± 1.23

b4 [GeV�1] 0.14 ± 0.39 �0.67 ± 0.54

b5 [GeV�1] 4.21 ± 0.47 5.10 ± 0.66

b6 [GeV�1] �2.11 ± 0.97 �2.30 ± 1.23

⇧2/dof 5.15 5.53

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē15 ē16 ē17 ē18
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Q4 �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �10.41 6.08 �0.37 3.26

⇥3 + Q4 �0.95 1.90 �1.78 1.50 2.40 �3.87 1.21 �5.25 �0.24 �6.35 2.34 �0.39 2.81

�-contribution 0 2.81 �2.81 1.40 2.39 �2.39 0 �4.77 1.87 �4.15 4.15 �0.17 1.32

�p
0(0) = 4.45µ�2 � 8.31µ�1 + 6.03µ0 + 3.22µ + . . . = 4.64 [10�4 fm4]

µ ⇥ M⇥/mN

c�2 = �c�3 = 2c�4 =
4h2

A

9(m� � mN)
⇤ 2.8GeV�1

1

� �i/�
n
⇥, �i = O(1)

Le� = L� + L�N

ci di ei

LEC N2LO fits ⌅ + ⇤ + ⌃

C̃res
1S0 �(0.12 . . . 0.16) �0.12

Cres
1S0 (1.16 . . . 1.37) 1.28

C̃res
3S1 �(0.13 . . . 0.16) �0.10

Cres
3S1 (0.42 . . . 0.72) 0.66

Cres
�1 �(0.36 . . . 0.47) �0.41

LEC Fit value Fit value

g1 1.37 ± 0.30 2.27 (fixed)

b3 [GeV�1] 1.76 ± 0.95 1.79 ± 1.23

b4 [GeV�1] 0.14 ± 0.39 �0.67 ± 0.54

b5 [GeV�1] 4.21 ± 0.47 5.10 ± 0.66

b6 [GeV�1] �2.11 ± 0.97 �2.30 ± 1.23

⇧2/dof 5.15 5.53

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē15 ē16 ē17 ē18
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.

054006-8

H. KREBS, A. GASPARYAN, AND E. EPELBAUM PHYSICAL REVIEW C 85, 054006 (2012)

0 50 100 150 200
0

5

10

δ 
[d

eg
re

e]

0 50 100 150 200
-10

-5

0

0 50 100 150 200

-2

0

2

0 50 100 150 200

-2
-1
0

δ 
[d

eg
re

e]

0 50 100 150 200
-2

-1

0

0 50 100 150 200
0

15

30

0 50 100 150 200
p Lab  [MeV/c]

0

0.1

0.2

δ 
[d

eg
re

e]

0 50 100 150 200
0

0.04

0.08

0 50 100 150 200
p Lab  [MeV/c]

0

0.1

0.2

0 50 100 150 200
p Lab  [MeV/c]

-0.2

-0.1

0

S11

S31

P11

P33P13P31

D13 D33 D15

D35

FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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Relevant LECs (in GeV-n) extracted from πN scattering 

Energy bin LO NLO N2LO N3LO N4LO N4LO+

neutron-proton data

0 � 100 MeV 130.11 3.79 1.46 1.08 1.08 1.08

0 � 200 MeV 104.71 19.88 3.21 1.14 1.09 1.10

0 � 300 MeV 111.24 52.03 8.78 1.51 1.15 1.13

proton-proton data

0 � 100 MeV 2046.58 33.68 6.67 0.86 0.84 0.84

0 � 200 MeV 1649.58 115.60 81.11 1.95 (1.08) 0.97

0 � 300 MeV 1301.41 104.38 84.24 2.73 (1.28) 1.18

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē17

[Q4]HB,NN, GW PWA �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �0.58

[Q4]HB,NN, KH PWA �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �0.37

[Q4]HB,NN, Roy-Steiner �1.10 3.57 �5.54 4.17 6.18 �8.91 0.86 �12.18 1.18 �0.18

[Q4]covariant, data �0.82 3.56 �4.59 3.44 5.43 �4.58 �0.40 �9.94 �0.63 �0.90
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— some LECs show sizable correlations (especially c1 and c3)…
Notice:

— KH PWA and Roy-Steiner LECs lead to comparable results in the NN sector
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.

054006-8

H. KREBS, A. GASPARYAN, AND E. EPELBAUM PHYSICAL REVIEW C 85, 054006 (2012)

0 50 100 150 200
0

5

10

δ 
[d

eg
re

e]

0 50 100 150 200
-10

-5

0

0 50 100 150 200

-2

0

2

0 50 100 150 200

-2
-1
0

δ 
[d

eg
re

e]

0 50 100 150 200
-2

-1

0

0 50 100 150 200
0

15

30

0 50 100 150 200
p Lab  [MeV/c]

0

0.1

0.2

δ 
[d

eg
re

e]

0 50 100 150 200
0

0.04

0.08

0 50 100 150 200
p Lab  [MeV/c]

0

0.1

0.2

0 50 100 150 200
p Lab  [MeV/c]

-0.2

-0.1

0

S11

S31

P11

P33P13P31

D13 D33 D15

D35

FIG. 3. (Color online) Results of the fit for πN s-, p-, and d -wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid
curves correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2 calculation.

parameters. Both the tree-level and finite loop contributions
are important for those four partial waves. Our results for the
phase shifts are similar and of a similar quality as the ones
reported in Ref. [45].

We finally turn to the discussion of the extracted parameters.
The obtained values of the low-energy constants are collected
in Table I. As one can see from the table, the LECs ci and d̄i turn
out to come out rather similar for the two partial wave analyses.
The difference does not exceed 30% except for the LECs c1
and d̄5 which are, however, considerably smaller than the other
ci’s and d̄i’s, respectively. The same conclusion about stability
can be drawn for the LECs ē14 and ē17. These are the only
counterterms contributing to d waves, which is why these two
constants are strongly constrained by the threshold behavior
of the d -wave phase shifts. In contrast, the other ēi’s are
very sensitive to the energy dependence of the s- and p-wave
amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of
a natural size except for the combination d̄14 − d̄15 and ē15,
which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and
ēi from our fits to the ones obtained in Refs. [32,45] using
heavy-baryon chiral perturbation theory at orders Q3 and Q4,
respectively, because of a different power counting schemes in
the two approaches. On the other hand, it is comforting to see
that the extracted values for the ci , d̄i , and even some of the
ēi coefficients are comparable to the ones found in Ref. [45]
in the fit with the LECs ci being set to their order-Q3 values;
see Table 4 of that work. We also stress that the values for
c1,3,4 obtained from the fit to the KH partial wave analysis are
in an excellent agreement with the ones determined at order

Q3 by using chiral perturbation theory inside the Mandelstam
triangle [58]. It is also worth mentioning that the values of c3,4
are in a good agreement with the ones determined from the
new partial wave analysis of proton-proton and neutron-proton
scattering data of Ref. [59].

It should be emphasized that one can obtain a considerably
better description of the πN phase shifts at orders Q2 and Q3

by allowing for the LECs ci and d̄i to be tuned rather than
keeping their values fixed at order Q4. In fact, the values of
ci are well known to change significantly when performing
fits at orders Q2 and Q3. Using the KH partial wave analysis,
employing the order-Q2 expressions for the amplitudes and
utilizing the same fitting procedure as before, we end up with
the following values for the ci’s:

cKH
1 = −0.26 GeV−1, cKH

2 = 2.02 GeV−1,
(4.7)

cKH
3 = −2.80 GeV−1, cKH

4 = 2.01 GeV−1;

while the GW partial wave analysis yields

cGW
1 = −0.58 GeV−1, cGW

2 = 2.02 GeV−1,
(4.8)

cGW
3 = −3.14 GeV−1, cGW

4 = 2.19 GeV−1.

Notice that c2,3,4 turn out to be somewhat smaller in magnitude
than the ones extracted from the order-Q2 fit to the s- and
p-wave πN threshold coefficients [20].4 We will come back
to the issue of optimizing the description of the data at lower

4This indicates that the order-Q2 representation of the amplitudes
does not provide the appropriate description of the data in the whole
momentum range used in our fits.
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Relevant LECs (in GeV-n) extracted from πN scattering 

Energy bin LO NLO N2LO N3LO N4LO N4LO+

neutron-proton data

0 � 100 MeV 130.11 3.79 1.46 1.08 1.08 1.08

0 � 200 MeV 104.71 19.88 3.21 1.14 1.09 1.10

0 � 300 MeV 111.24 52.03 8.78 1.51 1.15 1.13

proton-proton data

0 � 100 MeV 2046.58 33.68 6.67 0.86 0.84 0.84

0 � 200 MeV 1649.58 115.60 81.11 1.95 (1.08) 0.97

0 � 300 MeV 1301.41 104.38 84.24 2.73 (1.28) 1.18

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē17

[Q4]HB,NN, GW PWA �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �0.58

[Q4]HB,NN, KH PWA �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �0.37

[Q4]HB,NN, Roy-Steiner �1.10 3.57 �5.54 4.17 6.18 �8.91 0.86 �12.18 1.18 �0.18

[Q4]covariant, data �0.82 3.56 �4.59 3.44 5.43 �4.58 �0.40 �9.94 �0.63 �0.90
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— some LECs show sizable correlations (especially c1 and c3)…
Notice:

— KH PWA and Roy-Steiner LECs lead to comparable results in the NN sector

With the LECs taken from πN, the long-range NN force is completely fixed (parameter-free)



 Regularization
The cutoff Λ has to be kept finite, Λ ~ Λb (unless all counterterms are taken into account in the 
calculations) [Lepage ’97; EE, Gegelia ’09]. In practice, low values of Λ are preferred:

— many-body methods require soft interactions,
— spurious deeply-bound states for Λ > Λcrit make calculations for A > 3 unfeasible…

it is crucial to employ a regulator that minimizes finite-Λ artifacts!
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Nonlocal:

affect long-range interactions…
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i
@

@t
 0 = He↵ [a

0
, ȧ
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Reinert, Krebs, EE ’18;Local:

— Application to 2π exchange does not require re-calculating the corresponding diagrams:

reg.

polynomial 
in q2, Mπ
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neutron-proton scattering data

0 � 100 1.18 1.36 1.29 1.12 1.12 1.07
0 � 200 1.17 1.33 1.33 1.18 1.23 1.06
0 � 300 1.23 1.37 2.48 1.26 1.35 1.10

proton-proton scattering data

0 � 100 1.02 1.35 0.90 1.00 1.17 0.86
0 � 200 1.32 1.60 1.05 1.15 1.43 0.95
0 � 300 1.39 2.07 1.46 1.20 1.40 0.99

Energy bin N3LO Idaho 500/600 N4LO/N4LO+ CD Bonn 2000 Nijm II

neutron-proton data

0 � 100 MeV 1.17/1.35 1.08/1.08 1.08 1.08

0 � 200 MeV 1.17/1.33 1.09/1.10 1.07 1.07

0 � 300 MeV 1.24/1.38 1.15/1.13 1.09 1.11

proton-proton data

0 � 100 MeV 0.96/1.28 0.84/0.84 0.84 0.83
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0 � 300 MeV 1.37/2.04 1.46/1.18 0.99 1.03
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”�2/datum” (np, 0-200 MeV) = 1.8
R=1.2 fm ! 0.8

R=1.1 fm ! 0.6
R=1.0 fm ! 0.7

R=0.9 fm ! 0.8
R=0.8 fm ,

while the results for pp channels are:

”�2/datum” (pp, 0-200 MeV) = 8.2
R=1.2 fm ! 2.2

R=1.1 fm ! 0.6
R=1.0 fm ! 0.7

R=0.9 fm ! 2.1
R=0.8 fm .

5

does not affect long-range physics at any order in 1/Λ2-expansion 

[inspired by 
Thomas Rijken]
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FIG. 2: (Color online) Ratios W (2)
C,⇤, i(r)/W

(2)
C,1(r) for for di↵erent implementations of the regularization i = 1, . . . , 4 defined in

the text as a function of the relative distance between the nucleons. Dashed-double-dotted light-brown, dashed blue, dashed-
dotted green and solid red lines refer to i = 1, 2, 3 and 4, respectively. The cuto↵ ⇤ is set to be ⇤ = 450 MeV. The dotted
horizontal line corresponds to the unregularized potential, i.e., the ratio is equal to 1, and is drawn to guide the eyes.

2. Next, we follow the opposite approach and retain only the momentum-dependent part of the regulator with-
out introducing spectral-function regularization. The regularized potential is defined by means of the twice
subtracted spectral integral
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(r) =

1

2⇡2

Z
q2dq j0(qr)W

(2)

C,⇤, 2
(q) . (2.36)

Alternatively, one can just multiply W (2)

C,1(q) by the regulator e�
q2

2⇤2 , which leads to a di↵erent admixture of
the contact terms. We found, however, that this definition leads to larger distortions at short distances as the
one in Eq. (2.36).

3. In the third approach, the regularized potential is defined according to Eq. (2.23) but without explicitly sub-
tracting the short-range terms, i.e.:
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and the Fourier transform to coordinate space can be performed using the second relation in Eq. (2.36).

4. Finally, the approach to define the regularized potential W (2)
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(q) adopted in the present analysis is
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where the functions C2

C,i
(µ) are determined as described above and given in appendix A.

In Fig. 2, we show the ratios of the potentials W (2)

C,⇤, i
(r), with r = 1, . . . , 4, to the unregularized expression W (2)

C,1(r)
As before, we use the intermediate value of the cuto↵ of ⇤ = 450 MeV. Retaining only the momentum-transfer-
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”�2/datum” (np, 0-200 MeV) = 1.8
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R=0.8 fm ,

5

Λ = 500 MeV

Does it matter in practice?

 Regularization



 NN data analysis

Since 1950-es, about 3000 proton-proton + 5000 neutron-proton scattering data below 
350 MeV have been measured.

However, certain data are mutually incompatible within errors and have to be rejected. 
2013 Granada database [Navarro-Perez et al., PRC 88 (2013) 064002], rejection rate: 31% np, 11% pp:
            2158 proton-proton + 2697 neutron-proton data below Elab = 300 MeV

7

Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j
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Database

● Includes scattering data from 50ies up to 
2013

● uses ”3σ-criterion” to reject non-normal-
distributed data

● rejection rate 0-300 MeV: np: 31%, pp: 11%
np

pp

Use self-consistent 2013 Granada database 
[Phys. Rev. C 88.064002]

Comparison between theory and 
experiment via standard χ2 approach:

● Z (inverse relative norm) is chosen to 
minimze χ2

j

To fix NN contact interactions, use scattering data together with Bd = 2.224575(9) MeV 
and bnp = 3.7405(9) fm. 

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88
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Absolute values of the LECs in natural units

Significant correlations within the 1S0 and 3S1-3D1 channels but little correlations 
otherwise. Still, all LECs can be accurately determined…  

Natural units for the LECs according to NDA: 
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Assuming Λb = 600 MeV [EE, Krebs, Meißner EPJA 51 (15) 53; Furnstahl, Klco, Phillips, Wesolowski, 

PRC 92 (15) 024005], the LECs come out of a natural size.

signals that Λb gets affected by 
the too soft choice of Λ…

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Low-energy constants



41

●●●
●

●

●
●

●
●

●
●

0

20

40

60

δ 
[d

eg
]

1S0

●●
●

●
●

●

●

●

●

●

●−15
−10
−5

0
5

10

3P0

●●●
●

●

●

●
●

●
●

●−30
−25
−20
−15
−10
−5

0

1P1

●●●
●

●

●
●

●
●

●
●−30

−20

−10

0

3P1

●

●
●

●
●

●
●

● ● ● ●0

50

100

150

δ 
[d

eg
]

3S1

●
●
●
●

●
●

●
●

●
●

●

0
1
2
3
4
5
6

ε1
●●●

●
●

●

●
●

●
● ●−25

−20
−15
−10
−5

0

3D1
●●●

●
●

●

●

●
●

●
●

0
2
4
6
8

10 1D2

●●●
●

●

●

●
● ● ● ●

0
5

10
15
20
25

δ 
[d

eg
]

3D2

●●●
●

●

●

●
●

● ● ●

0

5

10

15 3P2
●●●

●

●

●
● ●

●
● ●

−3
−2.5
−2

−1.5
−1

−0.5
0

ε2 ●●●●
●

●
●

● ● ●
●

0

1

2

3 3F2

●●●
●

●

●
●

●
●

●

●

0 100 200 300
Elab [MeV]

−6
−5
−4
−3
−2
−1

0

δ 
[d

eg
]

1F3

●●●●
●

●

●
●

● ● ●

0 100 200 300
Elab [MeV]

−3

−2

−1

0

3F3
●●●● ●

●

●
●

● ● ●

0 100 200 300
Elab [MeV]

0
2
4
6
8 3D3

●●●● ●
●

●

●

●

●
●

0 100 200 300
Elab [MeV]

0
1
2
3
4 3F4

●N4LO+ data Fit Nijmegen Granada 2013 Gross 2008

●●●
●

●

●
●

●
●

●
●

0

20

40

60

δ 
[d

eg
]

1S0

●●
●

●
●

●

●

●

●

●

●−15
−10
−5

0
5

10

3P0

●●●
●

●

●

●
●

●
●

●−30
−25
−20
−15
−10
−5

0

1P1

●●●
●

●

●
●

●
●

●
●−30

−20

−10

0

3P1

●

●
●

●
●

●
●

● ● ● ●0

50

100

150

δ 
[d

eg
]

3S1

●
●
●
●

●
●

●
●

●
●

●

0
1
2
3
4
5
6

ε1
●●●

●
●

●

●
●

●
● ●−25

−20
−15
−10
−5

0

3D1
●●●

●
●

●

●

●
●

●
●

0
2
4
6
8

10 1D2

●●●
●

●

●

●
● ● ● ●

0
5

10
15
20
25

δ 
[d

eg
]

3D2

●●●
●

●

●

●
●

● ● ●

0

5

10

15 3P2
●●●

●

●

●
● ●

●
● ●

−3
−2.5
−2

−1.5
−1

−0.5
0

ε2 ●●●●
●

●
●

● ● ●
●

0

1

2

3 3F2

●●●
●

●

●
●

●
●

●

●

0 100 200 300
Elab [MeV]

−6
−5
−4
−3
−2
−1

0
δ 

[d
eg

]

1F3

●●●●
●

●

●
●

● ● ●

0 100 200 300
Elab [MeV]

−3

−2

−1

0

3F3
●●●● ●

●

●
●

● ● ●

0 100 200 300
Elab [MeV]

0
2
4
6
8 3D3

●●●● ●
●

●

●

●

●
●

0 100 200 300
Elab [MeV]

0
1
2
3
4 3F4

●N4LO+ data Fit Nijmegen Granada 2013 Gross 2008

●●●
●

●

●
●

●
●

●
●

0

20

40

60

δ 
[d

eg
]

1S0

●●
●

●
●

●

●

●

●

●

●−15
−10
−5

0
5

10

3P0

●●●
●

●

●

●
●

●
●

●−30
−25
−20
−15
−10
−5

0

1P1

●●●
●

●

●
●

●
●

●
●−30

−20

−10

0

3P1

●

●
●

●
●

●
●

● ● ● ●0

50

100

150

δ 
[d

eg
]

3S1

●
●
●
●

●
●

●
●

●
●

●

0
1
2
3
4
5
6

ε1
●●●

●
●

●

●
●

●
● ●−25

−20
−15
−10
−5

0

3D1
●●●

●
●

●

●

●
●

●
●

0
2
4
6
8

10 1D2

●●●
●

●

●

●
● ● ● ●

0
5

10
15
20
25

δ 
[d

eg
]

3D2

●●●
●

●

●

●
●

● ● ●

0

5

10

15 3P2
●●●

●

●

●
● ●

●
● ●

−3
−2.5
−2

−1.5
−1

−0.5
0

ε2 ●●●●
●

●
●

● ● ●
●

0

1

2

3 3F2

●●●
●

●

●
●

●
●

●

●

0 100 200 300
Elab [MeV]

−6
−5
−4
−3
−2
−1

0

δ 
[d

eg
]

1F3

●●●●
●

●

●
●

● ● ●

0 100 200 300
Elab [MeV]

−3

−2

−1

0

3F3
●●●● ●

●

●
●

● ● ●

0 100 200 300
Elab [MeV]

0
2
4
6
8 3D3

●●●● ●
●

●

●

●

●
●

0 100 200 300
Elab [MeV]

0
1
2
3
4 3F4

●N4LO+ data Fit Nijmegen Granada 2013 Gross 2008

●●●
●

●

●
●

●
●

●
●

0

20

40

60

δ 
[d

eg
]

1S0

●●
●

●
●

●

●

●

●

●

●−15
−10
−5

0
5

10

3P0

●●●
●

●

●

●
●

●
●

●−30
−25
−20
−15
−10
−5

0

1P1

●●●
●

●

●
●

●
●

●
●−30

−20

−10

0

3P1

●

●
●

●
●

●
●

● ● ● ●0

50

100

150

δ 
[d

eg
]

3S1

●
●
●
●

●
●

●
●

●
●

●

0
1
2
3
4
5
6

ε1
●●●

●
●

●

●
●

●
● ●−25

−20
−15
−10
−5

0

3D1
●●●

●
●

●

●

●
●

●
●

0
2
4
6
8

10 1D2

●●●
●

●

●

●
● ● ● ●

0
5

10
15
20
25

δ 
[d

eg
]

3D2

●●●
●

●

●

●
●

● ● ●

0

5

10

15 3P2
●●●

●

●

●
● ●

●
● ●

−3
−2.5
−2

−1.5
−1

−0.5
0

ε2 ●●●●
●

●
●

● ● ●
●

0

1

2

3 3F2

●●●
●

●

●
●

●
●

●

●

0 100 200 300
Elab [MeV]

−6
−5
−4
−3
−2
−1

0

δ 
[d

eg
]

1F3

●●●●
●

●

●
●

● ● ●

0 100 200 300
Elab [MeV]

−3

−2

−1

0

3F3
●●●● ●

●

●
●

● ● ●

0 100 200 300
Elab [MeV]

0
2
4
6
8 3D3

●●●● ●
●

●

●

●

●
●

0 100 200 300
Elab [MeV]

0
1
2
3
4 3F4

●N4LO+ data Fit Nijmegen Granada 2013 Gross 2008

N4LO+
Nijmegen

Gross-Stadler
Granada

●●●

●

●

●

●
●

●
●

●

0

20

40

60

δ 
[d

eg
]

1S0

●
●
●

●
●

●

●

●

●

●

●−15
−10
−5

0
5

10

3P0

●●
●
●

●

●

●

●
●

●
●−30

−20

−10

0

1P1

●●●
●

●

●

●

●
●

●
●−30

−20

−10

0

3P1

●

●
●

●

●

●
●

●
●

● ●0

50

100

150

δ 
[d

eg
] 3S1

●
●
●

●
●

●
●

●
●

●
●

0
1
2
3
4
5
6

ε1
●●●

●

●

●

●

●
●

●
●

−30
−25
−20
−15
−10
−5

0

3D1
●●●

●
●

●

●

●

●
●

●

0
2
4
6
8

10
12

1D2

●●●

●

●

●

●
● ● ● ●

0
5

10
15
20
25

δ 
[d

eg
] 3D2

●●●
●

●

●

●
●

● ● ●

0

5

10

15 3P2
●●
●

●

●

●
● ●

●
● ●

−3

−2

−1

0

ε2 ●●●●
●

●
●

● ● ●
●

0

1

2

3 3F2

●●●
●

●

●
●

●
●

●

●

0 100 200 300
Elab [MeV]

−6

−4

−2

0

δ 
[d

eg
]

1F3

●●●
●

●

●

●
●

● ● ●

0 100 200 300
Elab [MeV]

−3

−2

−1

0

3F3
●●●● ●

●

●

●
● ● ●

0 100 200 300
Elab [MeV]

0

2

4

6

8 3D3

●●●● ●
●

●

●

●

●
●

0 100 200 300
Elab [MeV]

0

1

2

3

4 3F4

●N4LO+ data Fit Nijmegen Granada 2013 Gross 2008
FIG. 16: (Color online) Neutron-proton S-, P-, D- and F-wave phase shifts and the mixing angles ✏1, ✏2 and ✏2 as obtained
at N4LO+ using the cuto↵ ⇤ = 450 MeV (red solid lines) in comparison with the Nijmegen [20] (solid dots) the Granada [92]
(blue open triangles) and Gross-Stadler [121] (green open squares) PWA. Light shaded bands show the estimated truncation
error as explained in appendix D. The shown uncertainties of the Nijmegen PWA correspond to systematic errors estimated
from the Nijm I, II and Reid93 potentials [110] as explained in Ref. [6].

and 0.15%, respectively.13 In both cases, the observed ⇤-dependence is smaller than the deviations from the very
precisely known experimental/empirical values listed in Table VIII. These deviations amount to ⇠ 0.015 fm2 and
⇠ 0.009 fm for Q and rd, respectively, and are comparable with the truncation errors for these quantities at N2LO,

namely �Q(3) = ±(0.005 . . . 0.011) fm2 (depending on the cuto↵) and �r(3)
d

= ±0.005 fm, which estimate the expected
size of N3LO contributions to these observables. This is fully in line with the fact that our calculations do not take
into account the relativistic corrections and contributions to the exchange charge operator at N3LO, see Ref. [33, 34]
for explicit expressions. Our results further indicate that starting from N3LO, the theoretical uncertainty for both
quantities is dominated by the one of the ⇡N LECs similarly to other low-energy observables considered in this and
previous sections. For both Q and rd, employing the ⇡N LECs from set 2 tends to increase the discrepancy with the
empirical numbers.

13
The smaller cuto↵ dependence of the deuteron radius reflects the long-range nature of this observable as opposed to that of Q.

— N4LO+ yields currently the best description of the 2013 Granada database
— 40% less parameters (27+1) compared to high-precision potentials
— Clear evidence of the parameter-free chiral 2π exchange 
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Careful error analysis: (i) truncation error [EE, Krebs, Meißner EPJ A51 (15)], (ii) statistical uncertainty 
(NN LECs), (iii) uncertainty due to πN LECs and (iv) choice of the energy range in the fits.
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Error analysis

Exp:
Rodning, Knutson ’90

statistical error variation of Emax

truncation error πN LECs

Example: deuteron asymptotic normalizations (relevant for nuclear astrophysics)

Elab bin CD-Bonn — Idaho N3LO — — improved chiral potentials at N3LO, this work —
(MeV) (500) (600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

neutron-proton
0–100 0.6 1.7 5.2 0.8 0.7 0.6 0.7 1.4
0–200 0.6 2.2 5.3 0.8 0.7 0.6 0.8 1.8
0–300 0.6 3.3 6.8 2.1 1.5 1.8 4.0 10.7

proton-proton
0–100 0.5 1.5? 6.7? 1.8 0.8 0.5 1.2 4.6
0–200 1.3 2.9? 11.7? 2.1 0.7 0.6 2.2 8.2
0–300 1.3 5.9? 30.0? 12.0 3.2 7.0 24.5 66.8

?The 1S0 partial wave has not been taken into account.

Elab bin CD-Bonn — Idaho N3LO — — improved chiral potentials at N3LO, this work —
(MeV) (500) (600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

neutron-proton phase shifts
0–100 0.6 1.7 5.2 0.8 0.7 0.6 0.7 1.4
0–200 0.6 2.2 5.3 0.8 0.7 0.6 0.8 1.8
0–300 0.6 3.3 6.8 2.1 1.5 1.8 4.0 10.7

proton-proton phase shifts
0–100 0.5 1.5? 6.7? 1.8 0.8 0.5 1.2 4.6
0–200 1.3 2.9? 11.7? 2.1 0.7 0.6 2.2 8.2
0–300 1.3 5.9? 30.0? 12.0 3.2 7.0 24.5 66.8

?The 1S0 partial wave has not been taken into account.
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Elab bin CD-Bonn — Idaho N3LO — — improved chiral potentials at N3LO, this work —
(MeV) (500) (600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

neutron-proton phase shifts
0–100 0.6 1.7 5.2 0.8 0.7 0.6 0.7 1.4
0–200 0.6 2.2 5.3 0.8 0.7 0.6 0.8 1.8
0–300 0.6 3.3 6.8 2.1 1.5 1.8 4.0 10.7

proton-proton phase shifts
0–100 0.5 1.5? 6.7? 1.8 0.8 0.5 1.2 4.6
0–200 1.3 2.9? 11.7? 2.1 0.7 0.6 2.2 8.2
0–300 1.3 5.9? 30.0? 12.0 3.2 7.0 24.5 66.8

?The 1S0 partial wave has not been taken into account.

�2
(c) ⇡ �2

min +
1

2
(c � cmin)

TH(c � cmin)

Hij =
@2�2

@ci@cj

����
c=cmin

O(c) = O(cmin) + JO(c � cmin) +
1

2
(c � cmin)

THO(c � cmin)

u(r) ⇠ ASe
��r , w(r) ⇠ ADe��r

 

1 +
3

�r
+

3

(�r)2

!

15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

u
(r

),
 w

(r
) 

 [
fm

-1
/2

]

 0

 0.05

 0.1

 0.15

0 2 4 6 8 10

u
(r

),
 w

(r
) 

 [
fm

-1
/2

]

r [fm]r  [fm]

u(
r) 

 [f
m

-1
/2
]

w
(r)

  [
fm

-1
/2
]

s-state

d-state
Borbely et al. ’85

Nijmegen PWA [errors are „educated guesses“]  Stoks et al. ’95

Granada PWA [errors purely statistical]  Navarro Perez et al. ’13

H
~k ' 0

AS = 0.8847(+3)
(�3)(3)(5)(1) fm

�1/2

⌘ ⌘
AD

AS

= 0.0255(+1)
(�1)(1)(4)(1)

Aexp
S

= 0.8781(44) fm
�1/2

Aexp
S

= 0.8846(9) fm
�1/2

AS = 0.8845(8) fm
�1/2, ⌘ = 0.0256(4)

⌘exp
= 0.0256(4)

Ab

µ

s, p, rµ, lµ

mu = 1.8 . . . 2.8 MeV

md = 4.3 . . . 2.8 MeV

Le↵(⇡, N)

|~p | .
p
M⇡mN

mu ' 2.3 MeV

md ' 4.8 MeV

s, p, rµ, lµ

rµ ! r0
µ
= RrµR

†
+ iR @µR

† ,

lµ ! l0
µ
= L lµL

†
+ iL @µL

† ,

s + i p ! s0 + i p0
= R(s + i p)L† ,

s � i p ! s0 � i p0
= L(s � i p)R†

1

H
~k ' 0

AS = 0.8847(+3)
(�3)(3)(5)(1) fm

�1/2

⌘ ⌘
AD

AS

= 0.0255(+1)
(�1)(1)(4)(1)

Aexp
S

= 0.8781(44) fm
�1/2

Aexp
S

= 0.8846(9) fm
�1/2

AS = 0.8845(8) fm
�1/2, ⌘ = 0.0256(4)

AS = 0.8829(4) fm
�1/2, ⌘ = 0.0249(1)

⌘exp
= 0.0256(4)

Ab

µ

s, p, rµ, lµ

mu = 1.8 . . . 2.8 MeV

md = 4.3 . . . 2.8 MeV

Le↵(⇡, N)

|~p | .
p

M⇡mN

mu ' 2.3 MeV

md ' 4.8 MeV

s, p, rµ, lµ

rµ ! r0
µ
= RrµR

†
+ iR @µR

† ,

lµ ! l0
µ
= L lµL

†
+ iL @µL

† ,

s + i p ! s0 + i p0
= R(s + i p)L† ,

s � i p ! s0 � i p0
= L(s � i p)R†

1

H
~k ' 0

AS = 0.8847(+3)
(�3)(3)(5)(1) fm

�1/2

⌘ ⌘
AD

AS

= 0.0255(+1)
(�1)(1)(4)(1)

Aexp
S

= 0.8781(44) fm
�1/2

Aexp
S

= 0.8846(9) fm
�1/2

AS = 0.8845(8) fm
�1/2, ⌘ = 0.0256(4)

AS = 0.8829(4) fm
�1/2, ⌘ = 0.0249(1)

AS = 0.8781(44) fm�1/2, ⌘ = 0.0256(4)

⌘exp
= 0.0256(4)

Ab

µ

s, p, rµ, lµ

mu = 1.8 . . . 2.8 MeV

md = 4.3 . . . 2.8 MeV

Le↵(⇡, N)

|~p | .
p

M⇡mN

mu ' 2.3 MeV

md ' 4.8 MeV

s, p, rµ, lµ

1

H
~k ' 0

AS = 0.8847(+3)
(�3)(3)(5)(1) fm

�1/2

⌘ ⌘
AD

AS

= 0.0255(+1)
(�1)(1)(4)(1)

Aexp
S

= 0.8781(44) fm
�1/2

Aexp
S

= 0.8846(9) fm
�1/2

AS = 0.8845(8) fm
�1/2, ⌘ = 0.0256(4)

AS = 0.8829(4) fm
�1/2, ⌘ = 0.0249(1)

AS = 0.8781(44) fm�1/2, ⌘ = 0.0256(4)

⌘exp
= 0.0256(4)

Ab

µ

s, p, rµ, lµ

mu = 1.8 . . . 2.8 MeV

md = 4.3 . . . 2.8 MeV

Le↵(⇡, N)

|~p | .
p
M⇡mN

mu ' 2.3 MeV

md ' 4.8 MeV

s, p, rµ, lµ

1

H
~k ' 0

AS = 0.8847(+3)
(�3)(3)(5)(1) fm

�1/2

⌘ ⌘
AD

AS

= 0.0255(+1)
(�1)(1)(4)(1)

Aexp
S

= 0.8781(44) fm
�1/2

Aexp
S

= 0.8846(9) fm
�1/2

AS = 0.8845(8) fm
�1/2, ⌘ = 0.0256(4)

AS = 0.8829(4) fm
�1/2, ⌘ = 0.0249(1)

AS = 0.8781(44) fm�1/2, ⌘ = 0.0256(4)

⌘exp
= 0.0256(4)

Ab

µ

s, p, rµ, lµ

mu = 1.8 . . . 2.8 MeV

md = 4.3 . . . 2.8 MeV

Le↵(⇡, N)

|~p | .
p
M⇡mN

mu ' 2.3 MeV

md ' 4.8 MeV

s, p, rµ, lµ

1

Our determination:

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88



 Three-nucleon forces
N2LO: tree-level graphs, 2 new LECs  

N3LO: leading 1 loop, parameter-free  

N4LO: full 1 loop, almost completely worked out, several new LECs  

2

1/m

(a) (b) (c) (d) (e) (f) (g)

FIG. 1. (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions
are represented by solid and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding
interaction. Specifically, the individual diagrams are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange,
(e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See main text for details.

form for few- and many-body frameworks represents a
highly nontrivial task [37–39]. Due to the huge amount
of computational resources needed for this decomposi-
tion, matrix elements have been so far available only in
a limited model space [16]. As a consequence, consistent
N3LO three-body scattering calculations were limited to
low energies and no studies of heavier nuclei were pos-
sible. In this paper we present a novel framework that
allows one to decompose 3N interactions in a plane-wave
partial wave basis in a computationally much more ef-
ficient way than the framework of Refs. [38, 39]. This
new method makes explicit use of the fact that all (un-
regularized) contributions to chiral 3NFs are either local,
i.e. they depend only on momentum transfers, or they
contain only polynomial non-local terms.

In Section II we derive the new framework for decom-
posing local 3NFs e�ciently in a momentum-space par-
tial wave basis. In Section III we apply the calculated
matrix elements of chiral 3NFs up to N3LO to nuclear
matter and 3H, discuss the partial wave convergence and
investigate the importance of the individual topologies at
di↵erent orders in the chiral expansion. In Section IV we
summarize and given an outlook of future applications.

II. PARTIAL WAVE DECOMPOSITION OF
LOCAL THREE-NUCLEON FORCES

A general translationally invariant 3NF can be ex-
pressed as a function of the Jacobi momenta p = k1�k2

2

and q = 2
3

⇥
k3 � 1

2 (k1 + k2)
⇤
, where ki denote the single

nucleon momenta (in the following equations we will first
suppress spin and isospin degrees of freedom):

V123 = V123(p,q,p
0
,q0). (1)

Here and in the following p and q (p0 and q0) denote
the Jacobi momenta of the initial (final) state. For local
interactions, however, the momentum dependence fur-
ther simplifies as such forces only depend on momentum
transfers, i.e. on di↵erences of Jacobi momenta:

V
loc
123 = V

loc
123(p

0 � p,q0 � q) ⌘ V
loc
123(p̃, q̃). (2)

Note that this statement refers to unregularized forces.
Below we will apply non-local regulators to the partial-
wave decomposed matrix elements. The regularization
will be discussed in more detail in Section III.

Generally, the decomposition of 3NFs in plane-wave
partial waves involves the evaluation of projection inte-
grals of the form

F
mLmlmL0ml0
LlL0l0 (p, q, p0, q0) =

Z
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dq̂0
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(q̂0)YLmL(p̂)Ylml(q̂)V
loc
123(p̃, q̃) (3)

for fixed values of p = |p|, q = |q|, p0 = |p0|, q0 = |q0|
and the angular momentum quantum numbers. By using
symmetries, it is possible to reduce the dimensionality of
the angular integrals from 8 to 5. Traditional methods
are based on a direct discretization and numerical evalu-
ation of these angular integrals [38, 39]. Due to the large
number of external quantum numbers and momentum
mesh points such algorithms require very large computa-
tional resources for calculating all matrix elements nec-
essary for many-body studies. As a result, the number
of matrix elements of chiral N3LO interactions were so
far insu�cient for studies of nuclei and matter. However,
it is possible to evaluate the basic function F defined in
Eq. (3) in a much more e�cient way by explicitly mak-
ing use of the local nature of the 3NFs. Indeed, using
rotation invariance of the potential V loc

123 we can write it
as a function of three independent variables:

V
loc
123(p̃, q̃) = V

loc
123(p̃, q̃, cos ✓p̃q̃), (4)

where

cos ✓p̃q̃ =
p̃ · q̃
p̃q̃

, p̃ = |p̃|, q̃ = |q̃|. (5)

This already shows that the original eight dimensional
integral contains actually only three non-trivial integra-
tions. The other five integrations, after employing some
integral transformations, which are described in the ap-
pendix, can be performed analytically. The final result
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form for few- and many-body frameworks represents a
highly nontrivial task [37–39]. Due to the huge amount
of computational resources needed for this decomposi-
tion, matrix elements have been so far available only in
a limited model space [16]. As a consequence, consistent
N3LO three-body scattering calculations were limited to
low energies and no studies of heavier nuclei were pos-
sible. In this paper we present a novel framework that
allows one to decompose 3N interactions in a plane-wave
partial wave basis in a computationally much more ef-
ficient way than the framework of Refs. [38, 39]. This
new method makes explicit use of the fact that all (un-
regularized) contributions to chiral 3NFs are either local,
i.e. they depend only on momentum transfers, or they
contain only polynomial non-local terms.

In Section II we derive the new framework for decom-
posing local 3NFs e�ciently in a momentum-space par-
tial wave basis. In Section III we apply the calculated
matrix elements of chiral 3NFs up to N3LO to nuclear
matter and 3H, discuss the partial wave convergence and
investigate the importance of the individual topologies at
di↵erent orders in the chiral expansion. In Section IV we
summarize and given an outlook of future applications.
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and the angular momentum quantum numbers. By using
symmetries, it is possible to reduce the dimensionality of
the angular integrals from 8 to 5. Traditional methods
are based on a direct discretization and numerical evalu-
ation of these angular integrals [38, 39]. Due to the large
number of external quantum numbers and momentum
mesh points such algorithms require very large computa-
tional resources for calculating all matrix elements nec-
essary for many-body studies. As a result, the number
of matrix elements of chiral N3LO interactions were so
far insu�cient for studies of nuclei and matter. However,
it is possible to evaluate the basic function F defined in
Eq. (3) in a much more e�cient way by explicitly mak-
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form for few- and many-body frameworks represents a
highly nontrivial task [37–39]. Due to the huge amount
of computational resources needed for this decomposi-
tion, matrix elements have been so far available only in
a limited model space [16]. As a consequence, consistent
N3LO three-body scattering calculations were limited to
low energies and no studies of heavier nuclei were pos-
sible. In this paper we present a novel framework that
allows one to decompose 3N interactions in a plane-wave
partial wave basis in a computationally much more ef-
ficient way than the framework of Refs. [38, 39]. This
new method makes explicit use of the fact that all (un-
regularized) contributions to chiral 3NFs are either local,
i.e. they depend only on momentum transfers, or they
contain only polynomial non-local terms.
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posing local 3NFs e�ciently in a momentum-space par-
tial wave basis. In Section III we apply the calculated
matrix elements of chiral 3NFs up to N3LO to nuclear
matter and 3H, discuss the partial wave convergence and
investigate the importance of the individual topologies at
di↵erent orders in the chiral expansion. In Section IV we
summarize and given an outlook of future applications.
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symmetries, it is possible to reduce the dimensionality of
the angular integrals from 8 to 5. Traditional methods
are based on a direct discretization and numerical evalu-
ation of these angular integrals [38, 39]. Due to the large
number of external quantum numbers and momentum
mesh points such algorithms require very large computa-
tional resources for calculating all matrix elements nec-
essary for many-body studies. As a result, the number
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far insu�cient for studies of nuclei and matter. However,
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nd σtot at 135 MeV [Abfalterer et al.’01]
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pd minimum of dσ/dθ at 108 MeV [Ermisch et al.’03]
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[based on the EKM potential, R = 0.9 fm] 



 Three-nucleon forces
N2LO: tree-level graphs, 2 new LECs  

N3LO: leading 1 loop, parameter-free  

N4LO: full 1 loop, almost completely worked out, several new LECs  

2

1/m

(a) (b) (c) (d) (e) (f) (g)

FIG. 1. (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions
are represented by solid and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding
interaction. Specifically, the individual diagrams are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange,
(e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See main text for details.

form for few- and many-body frameworks represents a
highly nontrivial task [37–39]. Due to the huge amount
of computational resources needed for this decomposi-
tion, matrix elements have been so far available only in
a limited model space [16]. As a consequence, consistent
N3LO three-body scattering calculations were limited to
low energies and no studies of heavier nuclei were pos-
sible. In this paper we present a novel framework that
allows one to decompose 3N interactions in a plane-wave
partial wave basis in a computationally much more ef-
ficient way than the framework of Refs. [38, 39]. This
new method makes explicit use of the fact that all (un-
regularized) contributions to chiral 3NFs are either local,
i.e. they depend only on momentum transfers, or they
contain only polynomial non-local terms.

In Section II we derive the new framework for decom-
posing local 3NFs e�ciently in a momentum-space par-
tial wave basis. In Section III we apply the calculated
matrix elements of chiral 3NFs up to N3LO to nuclear
matter and 3H, discuss the partial wave convergence and
investigate the importance of the individual topologies at
di↵erent orders in the chiral expansion. In Section IV we
summarize and given an outlook of future applications.

II. PARTIAL WAVE DECOMPOSITION OF
LOCAL THREE-NUCLEON FORCES

A general translationally invariant 3NF can be ex-
pressed as a function of the Jacobi momenta p = k1�k2

2

and q = 2
3

⇥
k3 � 1

2 (k1 + k2)
⇤
, where ki denote the single

nucleon momenta (in the following equations we will first
suppress spin and isospin degrees of freedom):

V123 = V123(p,q,p
0
,q0). (1)

Here and in the following p and q (p0 and q0) denote
the Jacobi momenta of the initial (final) state. For local
interactions, however, the momentum dependence fur-
ther simplifies as such forces only depend on momentum
transfers, i.e. on di↵erences of Jacobi momenta:

V
loc
123 = V

loc
123(p

0 � p,q0 � q) ⌘ V
loc
123(p̃, q̃). (2)

Note that this statement refers to unregularized forces.
Below we will apply non-local regulators to the partial-
wave decomposed matrix elements. The regularization
will be discussed in more detail in Section III.

Generally, the decomposition of 3NFs in plane-wave
partial waves involves the evaluation of projection inte-
grals of the form

F
mLmlmL0ml0
LlL0l0 (p, q, p0, q0) =

Z
dp̂0

dq̂0
dp̂dq̂

⇥Y
⇤
L0mL0 (p̂

0)Y ⇤
l0ml0

(q̂0)YLmL(p̂)Ylml(q̂)V
loc
123(p̃, q̃) (3)

for fixed values of p = |p|, q = |q|, p0 = |p0|, q0 = |q0|
and the angular momentum quantum numbers. By using
symmetries, it is possible to reduce the dimensionality of
the angular integrals from 8 to 5. Traditional methods
are based on a direct discretization and numerical evalu-
ation of these angular integrals [38, 39]. Due to the large
number of external quantum numbers and momentum
mesh points such algorithms require very large computa-
tional resources for calculating all matrix elements nec-
essary for many-body studies. As a result, the number
of matrix elements of chiral N3LO interactions were so
far insu�cient for studies of nuclei and matter. However,
it is possible to evaluate the basic function F defined in
Eq. (3) in a much more e�cient way by explicitly mak-
ing use of the local nature of the 3NFs. Indeed, using
rotation invariance of the potential V loc

123 we can write it
as a function of three independent variables:

V
loc
123(p̃, q̃) = V

loc
123(p̃, q̃, cos ✓p̃q̃), (4)

where

cos ✓p̃q̃ =
p̃ · q̃
p̃q̃

, p̃ = |p̃|, q̃ = |q̃|. (5)

This already shows that the original eight dimensional
integral contains actually only three non-trivial integra-
tions. The other five integrations, after employing some
integral transformations, which are described in the ap-
pendix, can be performed analytically. The final result
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Determination of the LECs cD, cE

— Triton BE (cD-cE correlation)
— Explore various possibilities and let theory and/or data decide…

  Determination of cD, cE at N2LO (preliminary)
It is common to require that the 3H BE is correctly reproduced       !
       it remains to determine only one LEC cD as cE = f(cD) 
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yields the strongest constraint…



 Nd total cross section at 70 MeV (preliminary)
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 Summary and outlook

— derivation of contributions up to N3LO completed already in 2011; derivation of
     N4LO corrections done for V2N and almost done for V3N (new LECs…) and V4N

Nuclear Hamiltonian:

— accurate & precise 2N potentials at N4LO+ are available,

Electroweak current operators:
— have been worked out completely to N3LO
— some πN LECs in 1π axial charge at N3LO are unknown…
     [lattice QCD? ν-induced π-production? resonance saturation? large-Nc?…]

Next steps:
— Precision tests of the theory for 3H β decay & μ capture (validation)
— Extension to other processes, heavier nuclei, N4LO, explicit Δ’s, …

— promising results for few-N systems based on 2NF + 3NF@N2LO [LENPIC]

Work in progress:
— regularization of 3NF & currents beyond N2LO (nontrivial to maintain χ-symm!)


