Symmetries and Interactions from Lattice QCD

Amy Nicholson UNC, Chapel Hill

NORTH

LVX

IBERTA

HAPEL H

CIPANP18, Palm Springs, CA May 30, 2018

The Standard Model and Beyond

Dark matter

The Standard Model and Beyond

Matter-antimatter asymmetry

Dark matter

UX

nEDM at PS

Lattice QCD

- Numerical solution to QCD:
 - Non-perturbative formulation of QCD in discretized, finite spacetime
 - Currently our only reliable technique for solving QCD at low energies
 - All uncertainties are quantifiable and may be systematically removed
 - Extrapolations to continuum, infinite volume, physical pion mass

How can a solution of QCD teach us about new physics?

How can a solution of QCD teach us about new physics?

I. Look for discrepancies between the SM and experiment: g_A, proton radius (see talk by S. Syritsyn, Sat. 17:50), muon g-2 (see talk by A. Meyer, Weds. 15:00)

How can a solution of QCD teach us about new physics?

I. Look for discrepancies between the SM and experiment: g_A, proton radius (see talk by S. Syritsyn, Sat. 17:50), muon g-2 (see talk by A. Meyer, Weds. 15:00)

2. Match new physics model at high energies to nuclear experiments: 0vββ, nucleon/ nuclear EDM (see talk by S. Syritsyn, Tues. 17:50), DM searches (see talk by E. Rinaldi, Tues. 15:00)

What depends on g_A ?

• Free neutron lifetime

 $\bar{\nu}_e$

- Free neutron lifetime
- Nuclear beta decay

10

• Free neutron lifetime

 π

- Nuclear beta decay
- Nuclear force

- Free neutron lifetime
 Big Bang nucleosynthesis
- Nuclear beta decay
- Nuclear force

- Free neutron lifetime
- Nuclear beta decay
- Nuclear force

Big Bang nucleosynthesis

• Stellar processes

- Free neutron lifetime
- Nuclear beta decay
- Nuclear force

Big Bang nucleosynthesis

Stellar processes

Very precisely measured experimentally

Figure: A. P. Serebrov, E. A. Kolomensky, A. K. Fomin, I. A. Krasnoschekova, A. V. Vassiljev, D. M. Prudnikov, I. V. Shoka, A. V. Chechkin, M. E. Chaikovskiy, V. E. Varlamov, S. N. Ivanov, A. N. Pirozhkov, P. Geltenbort, O. Zimmer, T. Jenke, M. Van der Grinten, M. Tucker, arXiv:1712.05663

NIST

Figure: A. P. Serebrov, E. A. Kolomensky, A. K. Fomin, I. A. Krasnoschekova, A. V. Vassiljev, D. M. Prudnikov, I. V. Shoka, A. V. Chechkin, M. E. Chaikovskiy, V. E. Varlamov, S. N. Ivanov, A. N. Pirozhkov, P. Geltenbort, O. Zimmer, T. Jenke, M. Van der Grinten, M. Tucker, arXiv: 1712.05663

NIST

Pirozhkov, P. Geltenbort, O. Zimmer, T. Jenke, M. Van der Grinten, M. Tucker, arXiv:1712.05663

NIST

• Look for new physics/resolve lifetime puzzle

- Look for new physics/resolve lifetime puzzle
- in-medium effects/axial form factors (see talk by R. Gupta, Thurs. 16:40)
 - neutrinoless double beta decay (see recent work by NPLQCD), long baseline neutrino experiments

- Look for new physics/resolve lifetime puzzle
- in-medium effects/axial form factors (see talk by R. Gupta, Thurs. 16:40)
 - neutrinoless double beta decay (see recent work by NPLQCD), long baseline neutrino experiments
- Build quantitative connection between QCD & nuclear physics
 - g_A should be a benchmark
 - one of the simplest hadron structure matrix elements

g_A:LQCD results

g_A: LQCD results

PHYSICAL REVIEW D

overing particles, fields, gravitation, and cosmology

LHPC0	ighlights Recent Accepted Authors Referees Search Press About a	<u> </u>
CLS1	Access by Law	-
[†] QCDSF1	Axial, scalar, and tensor charges of the nucleon from $2+1+1$ -	- 1
QCDSF1	Tanmov Bhattacharva, Vincenzo Cirigliano, Saul D. Cohen, Raian Gupta, Huev-Wen Lin, and Boram Yoon	-
[†] RQCD1	(Precision Neutron Decay Matrix Elements (PNDME) Collaboration) Phys. Rev. D 94 , 054508 – Published 19 September 2016	
ETMC1	atic effects have been grossly underestimated. To gain	-
PNDME1	a better understanding of how the various sources of er- rors contribute and to reduce the overall uncertainty to	
ETMC1	O(2%) will require at least $O(200,000)$ measurements	-
CLS1	on the seven ensembles at different a and M_{π} used in	-
	this study and the analysis of one additional ensemble at $a = 0.06$ fm and $M_{\odot} = 1.35$ MeV. Increasing the statistics	
PDG1	by a factor of four will reduce the errors in the data with	-
	the largest t_{sep} we have analyzed and thus improve the	ı —
	$t_{\rm sep} \to \infty$ estimates. Adding the point at the physical	35
	quark mass and the smallest lattice spacing $a = 0.06$ fm, will further constrain the chiral fit. This level of precision	
	is achievable with the next generation of leadership-class	
	computing resources.	

• Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$

• Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$

Most calculations done at unphysically heavy quark (pion) masses - need theory to extrapolate in m_{π}

- Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$
- Need to carefully control systematics:

Most calculations done at unphysically heavy quark (pion) masses - need theory to extrapolate in mπ

- Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$
- Need to carefully control systematics:

Most calculations done at unphysically heavy quark (pion) masses - need theory to extrapolate in mπ

- Pion mass extrapolation
- Discretization
- Finite volume
- Excited state contamination

- Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$
- Need to carefully control systematics:

Most calculations done at unphysically heavy quark (pion) masses - need theory to extrapolate in m_π

- Pion mass extrapolation
- Discretization
- Finite volume
- Excited state contamination

All the more difficult with noisy data!

- Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$
- Need to carefully control systematics:
 - Pion mass extrapol-
 - Discretization
 - Finite volume
 - Excited state contamination

All the more difficult with noisy data!

ntrol Most calculations done at the avy quark (pion)

Improvements

- Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$
- Need to carefully control systematics:
 - Pion mass extrapol-
 - Discretization
 - Finite volume
 - Excited state contamination

All the more difficult with noisy data!

MENT

Most cal

heavy qu

- Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$
- Need to carefully control systematics:
 - Need nev Pion mass extrapol-
 - Discretization
 - Finite volume

Challenges

Excited state contamination

with noisy data!

similar techniques used in: A.J. Chambers et al. (2014,2015) M.J. Savage et al. (2016)

New calculation technique based on Feynman-Hellman theorem (C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, A. Walker-Loud 2016)

Most cal heavy qu
- Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$
- Need to carefully control systematics:
 - Need nev Pion mass extrapol-
 - Discretization
 - Finite volume
 - Excited state contamination

All the more difficult

Most cal

heavy qu

with noisy data!

similar techniques used in: A.J. Chambers et al. (2014,2015) M.J. Savage et al. (2016)

Improvements

- New calculation technique based on Feynman-Hellman theorem (C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, A. Walker-Loud 2016)
 - easier to analyze (improved systematics)
 - lower computational cost
 - can be reused for matrix elements between different states (g_A quenching)

- Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$
- Need to carefully control systematics:
 - Need nev Pion mass extrapol-
 - Discretization
 - Finite volume
 - Excited state contamination

All the more difficult

Most cal

heavy qu

with noisy data!

similar techniques used in: A.J. Chambers et al. (2014,2015) M.J. Savage et al. (2016)

Improvements

- New calculation technique based on Feynman-Hellman theorem (C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, A. Walker-Loud 2016)
 - easier to analyze (improved systematics)
 - lower computational cost
 - can be reused for matrix elements between different states (g_A quenching)
 - New mixed action: DWF on HISQ (E. Berkowitz, et al 2017)

- Monte Carlo noise/sign problem (nucleons) signal/noise ~ $e^{-A(m_N-3/2m_\pi)t}$
- Need to carefully control systematics:
 - NEED NEW Pion mass extrapol-
 - Discretization
 - Finite volume
 - Excited state contamination

All the more difficult with noisy data!

Most cal

heavy qu

Improvements

- New calculation technique based on Feynman-Hellman theorem (C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, A. Walker-Loud 2016)
 - easier to analyze (improved systematics)
 - lower computational cost
 - can be reused for matrix elements between different states (g_A quenching)
 - New mixed action: DWF on HISQ (E. Berkowitz, et al 2017)
 - smaller discretization effects, better chiral symmetry
 - gradient flow: improved statistics

similar techniques used in: A.J. Chambers et al. (2014,2015) M.J. Savage et al. (2016)

Improvements

$g_A^{LQCD} = 1.271 \pm 0.013$ Nature, May 30, 2018

C.C. Chang, A.N., E. Rinaldi, E. Berkowitz, N. Garron, D. Brantley, H. Monge-Camacho, C. Monahan, C. Bouchard, M.A. Clark, B. Joo, T. Kurth, K. Orginos, P. Vranas, A. Walker-Loud

$g_{A}^{LQCD} = 1.271 \pm 0.013$ Nature, May 30, 2018

C.C. Chang, A.N., E. Rinaldi, E. Berkowitz, N. Garron, D. Brantley, H. Monge-Camacho, C. Monahan, C. Bouchard, M.A. Clark, B. Joo, T. Kurth, K. Orginos, P. Vranas, A. Walker-Loud

Can already place stronger constraints on right-handed BSM currents than collider experiments

0.04

Alioli, S., Cirigliano, V., Dekens, W., de Vries, J., and Mereghetti, E. JHEP 05, 086 (2017)

Neutrinoless double beta decay

• Majorana: $v = \overline{v}$

- Majorana: $v = \overline{v}$
- Could be verified through observation of simultaneous double beta decay with no neutrino emission

- Majorana: $v = \overline{v}$
- Could be verified through observation of simultaneous double beta decay with no neutrino emission
 - Lepton number violating process

- Majorana: $v = \overline{v}$
- Could be verified through observation of simultaneous double beta decay with no neutrino emission
 - Lepton number violating process
 - Lepton number asymmetry (in early Universe) can be converted to baryon number asymmetry

- Anything not forbidden by symmetry should occur in nature
- Why are neutrinos so light?

- Anything not forbidden by symmetry should occur in nature
- Why are neutrinos so light?

Seesaw Mechanism

 $\left(\begin{array}{cc} M_L & M_D \\ M_D & M_R \end{array}\right)$

- Anything not forbidden by symmetry should occur in nature
- Why are neutrinos so light?

Seesaw Mechanism

 $\left(\begin{array}{cc} 0 & M_D \\ M_D & M_R \end{array}\right)$

- Anything not forbidden by symmetry should occur in nature
- Why are neutrinos so light?

Seesaw Mechanism

 $\left(\begin{array}{cc} 0 & M_D \\ M_D & M_R \end{array}\right)$

 $m_l \sim M_D^2 / M_R$

- Anything not forbidden by symmetry should occur in nature
- Why are neutrinos so light?

Seesaw Mechanism

 $\left(\begin{array}{cc} 0 & M_D \\ M_D & M_R \end{array}\right)$

 $m_l \sim M_D^2/M_R$

 $m_h \sim M_R$

Experiment

Majorana ⁷⁶Ge Gerda

76**Ge**

nEXO

136Xe

From NSAC Long Range Plan 2015

D

D

Capozzi, Valentino, Lisi, Marrone, Melchiorri, Palazzo Phys.Rev. D95 (2017) no.9, 096014

Relating Theory to Experiment

Relating Theory to Experiment

Relating Theory to Experiment

Relating Theory to Experiment

Long-range

Long-range

$$Prezeau, Ramsey-Musolf, Vogel (2003)$$

$$O(M_R, \theta, \cdots)$$

$$O(M_R, \theta,$$

Prezeau, Ramsey-Musolf, Vogel (2003)

Unknown!

Leading order short-range:

Don't need to calculate full nn \rightarrow pp transition from LQCD (difficult)!

- I. With LQCD, calculate $\pi \rightarrow \pi^+$ transition
- 2. Use EFT to determine $nn \rightarrow pp$ matrix element

Agrees to 2σ with: V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti Phys.Lett. B769 (2017) 460-464

Summary

- LQCD is a necessary step toward reliably connecting experimental signals to the SM/BSM
- Nucleon axial charge
 - Finally achieved 1% precision with LQCD!
 - Statistics dominated: can we resolve neutron lifetime puzzle?
- Leading short-range contribution to $0\nu\beta\beta$
 - Complete LQCD calculation at the physical point
 - To do: Plug the results into your favorite many-body calculation!
 - Future: full NNLO calculation including two-nucleon contact

Very similar to calculation of hadronic parity violation (see talk by A.Walker-Loud Sat. 17:30)

NPDGamma

р

d

1 +

 \mathcal{N}

- RIKEN/LBL: C.C. Chang
- RIKEN/BNL: E. Rinaldi
- NERSC: T. Kurth
- Liverpool: N. Garron
- UW/INT C. Monahan
- nVidia: M.A. Clark
- JLab: B. Joo
- WM/JLab: K. Orginos
- CCNY: B. Tiburzi
- LBL/UCB: A. Walker-Loud
- Glasgow: C. Bouchard
- LLNL: P. Vranas

- Jülich: E. Berkowitz
- WM/LBL: D. Brantley, H. Monge-Camacho

Lattice Ensembles

HISQ ensembles									
<i>a</i> [<i>fm</i>] :	m _π [MeV] 310	220	135						
0.15	$16^3 \times 48, m_{\pi}L \sim 3.78$	$24^3 \times 48, m_{\pi}L \sim 3.99$	$32^3 \times 48, m_{\pi}L \sim 3.25$						
0.12		$24^3 \times 64, m_{\pi}L \sim 3.22$							
0.12	$24^3 \times 64, m_{\pi}L \sim 4.54$	$32^3 \times 64, m_{\pi}L \sim 4.29$	$48^3 \times 64, m_{\pi}L \sim 3.91$						
0.12		$40^3 \times 64, m_{\pi}L \sim 5.36$							
0.09	$32^3 \times 96, m_{\pi}L \sim 4.50$	$48^3 \times 96, m_{\pi}L \sim 4.73$							
0.00									

- DWF on HISQ
- Gradient flow method for smearing configs
 - $m_{res} < 0.1 m_{\ell}$ for moderate L_5
 - dampens unphysical oscillations
 - noise reduction

MILC Collaboration Phys. Rev. D87 (2013) 054505

Narayanan, Neuberger (2006), Luscher (2010)

Callat arXiv:1701.07559

Future: two-nucleon contact

- Why calculate it?
 - Formally NNLO (Weinberg counting)
 - Weinberg often doesn't converge well, particularly in the ¹S₀ channel (see talk by V. Cirigliano)
 - LO contribution vanishes for some BSM models
- Two nucleon LQCD calculations much more difficult (see talks by S. Beane, J. Bulava?)

Cirigliano, V., Dekens, W., de Vries, J., Mereghetti, E., Graesser, M., Pastore, S., van Kolck, U arXiv: 1802.10097

$$\begin{split} \langle \pi^+ | \mathcal{O}^{V+} | \pi^- \rangle &= \frac{m_\pi^2}{f^2} C^{V+} \left[1 - \frac{16}{3} \frac{m_\pi^2}{(4\pi f)^2} \left(-\frac{1}{4} \log \frac{m_\pi^2}{\mu^2} + \frac{3}{4} \frac{m_{vs}^2}{m_\pi^2} \log \frac{m_{vs}^2}{\mu^2} + c^{V^+}(\mu) \right) \right], \\ \langle \pi^+ | \mathcal{O}^{LR} | \pi^- \rangle &= C^{LR} \left[1 - \frac{10}{3} \frac{m_\pi^2}{(4\pi f)^2} \left(-\frac{1}{5} \log \frac{m_\pi^2}{\mu^2} + \frac{6}{5} \frac{m_{vs}^2}{m_\pi^2} \log \frac{m_{vs}^2}{\mu^2} + c^{LR}(\mu) \right) \right], \\ \langle \pi^+ | \mathcal{O}^{S+} | \pi^- \rangle &= C^{S+} \left[1 - \frac{10}{3} \frac{m_\pi^2}{(4\pi f)^2} \left(-\frac{1}{5} \log \frac{m_\pi^2}{\mu^2} + \frac{6}{5} \frac{m_{vs}^2}{m_\pi^2} \log \frac{m_{vs}^2}{\mu^2} + \frac{6}{5} \frac{a^2 \Delta_I}{m_\pi^2} \left[\log \frac{m_\pi^2}{\mu^2} + 1 \right] + c^{S+}(\mu) \right) \right] \end{split}$$

e hairpin only seems to infect the last matrix element. There is a corresponding enhancement of the finite vo ect, which can be obtained by the replacement

$$a^{2}\Delta_{I}\left[\log\frac{m_{\pi}^{2}}{\mu^{2}}+1\right] \longrightarrow a^{2}\Delta_{I}\frac{\partial}{\partial m_{\pi}^{2}}\left[4m_{\pi}^{2}\sum_{\vec{\nu}\neq\vec{0}}\frac{\mathsf{K}_{1}(m_{\pi}L|\vec{\nu}|)}{m_{\pi}L|\vec{\nu}|}\right] = -2a^{2}\Delta_{I}\sum_{\vec{\nu}\neq\vec{0}}\mathsf{K}_{0}(m_{\pi}L|\vec{\nu}|).$$

Contractions

• QCD interactions can mix colors below

the electroweak scale

• Must add color mixed versions of

Prezeau, Ramsey-Musolf, Vogel ops 1&2

$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_{L}\tau^{-}\gamma^{\mu}q_{L}\right)\left[\bar{q}_{R}\tau^{-}\gamma_{\mu}q_{R}\right]$$
$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_{L}\tau^{-}\gamma^{\mu}q_{L}\right)\left[\bar{q}_{R}\tau^{-}\gamma_{\mu}q_{R}\right)$$
$$\mathcal{O}_{2+}^{++} = \left(\bar{q}_{R}\tau^{-}q_{L}\right)\left[\bar{q}_{R}\tau^{-}q_{L}\right] + \left(\bar{q}_{L}\tau^{-}q_{R}\right)\left[\bar{q}_{L}\tau^{-}q_{R}\right]$$
$$\mathcal{O}_{2+}^{'++} = \left(\bar{q}_{R}\tau^{-}q_{L}\right)\left[\bar{q}_{R}\tau^{-}q_{L}\right) + \left(\bar{q}_{L}\tau^{-}q_{R}\right)\left[\bar{q}_{L}\tau^{-}q_{R}\right)$$
$$\mathcal{O}_{3+}^{++} = \left(\bar{q}_{L}\tau^{-}\gamma^{\mu}q_{L}\right)\left[\bar{q}_{L}\tau^{-}\gamma_{\mu}q_{L}\right] + \left(\bar{q}_{R}\tau^{-}\gamma^{\mu}q_{R}\right)\left[\bar{q}_{R}\tau^{-}\gamma_{\mu}q_{R}\right]$$

Contractions

• QCD interactions can mix colors below

the electroweak scale

• Must add color mixed versions of

Prezeau, Ramsey-Musolf, Vogel ops 1&2

$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_L \tau^- \gamma^\mu q_L\right) \left[\bar{q}_R \tau^- \gamma_\mu q_R\right]$$
$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_L \tau^- \gamma^\mu q_L\right) \left[\bar{q}_R \tau^- \gamma_\mu q_R\right)$$
$$\mathcal{O}_{2+}^{++} = \left(\bar{q}_R \tau^- q_L\right) \left[\bar{q}_R \tau^- q_L\right] + \left(\bar{q}_L \tau^- q_R\right) \left[\bar{q}_L \tau^- q_R\right]$$
$$\mathcal{O}_{2+}^{++} = \left(\bar{q}_R \tau^- q_L\right) \left[\bar{q}_R \tau^- q_L\right) + \left(\bar{q}_L \tau^- q_R\right) \left[\bar{q}_L \tau^- q_R\right)$$
$$\mathcal{O}_{3+}^{++} = \left(\bar{q}_L \tau^- \gamma^\mu q_L\right) \left[\bar{q}_L \tau^- \gamma_\mu q_L\right] + \left(\bar{q}_R \tau^- \gamma^\mu q_R\right) \left[\bar{q}_R \tau^- \gamma_\mu q_R\right]$$

4	decay ops.	$\mathcal{O}_{1+}^{\pm\pm}$	$\mathcal{O}_{2+}^{\pm\pm}$	$\mathcal{O}_{2-}^{\pm\pm}$	$\mathcal{O}_{3+}^{\pm\pm}$	$\mathcal{O}_{3-}^{\pm\pm}$	$\mathcal{O}_{4+}^{\pm\pm,\mu}$	$\mathcal{O}_{4-}^{\pm\pm,\mu}$	$\mathcal{O}^{\pm\pm,\mu}_{5+}$	$\mathcal{O}_{5-}^{\pm\pm,\mu}$
V	$\pi\pi ee \text{ LO}$	 ✓ 	✓	X	X	X	X	X	X	X
	$\pi\pi ee$ NNLO	√	√	X	√	X	X	X	X	X
	$NN\pi ee$ LO	X	X	\checkmark	X	X	\checkmark	\checkmark	\checkmark	\checkmark
	$NN\pi ee$ NLO	X	\checkmark	X	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark
	NNNNee LO	\checkmark	\checkmark	X	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark

- Nine operators:
 - $\pi \rightarrow \pi$: only need parity even
 - Vector operators suppressed
 by m_e
 - QCD interactions can mix colors below the electroweak scale: +2 ops

$$\begin{split} \mathcal{O}_{1+}^{ab} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}})(\bar{q}_{\mathrm{R}}\tau^{b}\gamma_{\mu}q_{\mathrm{R}}), \\ \mathcal{O}_{2\pm}^{ab} &= (\bar{q}_{\mathrm{R}}\tau^{a}q_{\mathrm{L}})(\bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}) \pm (\bar{q}_{\mathrm{L}}\tau^{a}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}}), \\ \mathcal{O}_{3\pm}^{ab} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}})(\bar{q}_{\mathrm{L}}\tau^{b}\gamma_{\mu}q_{\mathrm{L}}) \pm (\bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{R}}\tau^{b}\gamma_{\mu}q_{\mathrm{R}}), \\ \mathcal{O}_{4\pm}^{ab,\mu} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}} \mp \bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}} - \bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}), \\ \mathcal{O}_{5\pm}^{ab,\mu} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}} \pm \bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}} + \bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}). \end{split}$$

4	decay ops.	$\mathcal{O}_{1+}^{\pm\pm}$	$\mathcal{O}_{2+}^{\pm\pm}$	$\mathcal{O}_{2-}^{\pm\pm}$	$\mathcal{O}_{3+}^{\pm\pm}$	$\mathcal{O}_{3-}^{\pm\pm}$	$\mathcal{O}_{4+}^{\pm\pm,\mu}$	$\mathcal{O}_{4-}^{\pm\pm,\mu}$	$\mathcal{O}^{\pm\pm,\mu}_{5+}$	$\mathcal{O}_{5-}^{\pm\pm,\mu}$
Ľ	$\pi\pi ee \text{ LO}$	\	√	X	X	X	X	X	X	X
	$\pi\pi ee$ NNLO	√	 ✓ 	X	√	X	X	X	X	X
	$NN\pi ee$ LO	X	X	\checkmark	X	X	\checkmark	\checkmark	\checkmark	\checkmark
	$NN\pi ee$ NLO	X	\checkmark	X	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark
	NNNNee LO	\checkmark	\checkmark	X	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark

- Nine operators:
 - $\pi \rightarrow \pi$: only need parity even
 - Vector operators suppressed
 by m_e
 - QCD interactions can mix colors below the electroweak scale: +2 ops

$$\begin{split} \mathcal{O}_{1+}^{ab} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}})(\bar{q}_{\mathrm{R}}\tau^{b}\gamma_{\mu}q_{\mathrm{R}}),\\ \mathcal{O}_{2\pm}^{ab} &= (\bar{q}_{\mathrm{R}}\tau^{a}q_{\mathrm{L}})(\bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}) \pm (\bar{q}_{\mathrm{L}}\tau^{a}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}}),\\ \mathcal{O}_{3\pm}^{ab} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}})(\bar{q}_{\mathrm{L}}\tau^{b}\gamma_{\mu}q_{\mathrm{L}}) \pm (\bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{R}}\tau^{b}\gamma_{\mu}q_{\mathrm{R}}),\\ \mathcal{O}_{4\pm}^{ab,\mu} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}} \mp \bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}} - \bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}),\\ \mathcal{O}_{5\pm}^{ab,\mu} &= (\bar{q}_{\mathrm{L}}\tau^{a}\gamma^{\mu}q_{\mathrm{L}} \pm \bar{q}_{\mathrm{R}}\tau^{a}\gamma^{\mu}q_{\mathrm{R}})(\bar{q}_{\mathrm{L}}\tau^{b}q_{\mathrm{R}} + \bar{q}_{\mathrm{R}}\tau^{b}q_{\mathrm{L}}). \end{split}$$

Ĭ	decay ops.	$\mathcal{O}_{1+}^{\pm\pm}$	$\mathcal{O}_{2+}^{\pm\pm}$	$\mathcal{O}_{2-}^{\pm\pm}$	$\mathcal{O}_{3+}^{\pm\pm}$	$\mathcal{O}_{3-}^{\pm\pm}$	$\mathcal{O}_{4+}^{\pm\pm,\mu}$	$\mathcal{O}_{4-}^{\pm\pm,\mu}$	$\mathcal{O}_{5+}^{\pm\pm,\mu}$	$\mathcal{O}_{5-}^{\pm\pm,\mu}$
V	$\pi\pi ee \text{ LO}$	 Image: A start of the start of		X	X	X	X	X	X	X
	$\pi\pi ee$ NNLO	 ✓ 	 ✓ 	X	 ✓ 	X	X	X	X	X
	$NN\pi ee$ LO	X	X	\checkmark	X	X	\checkmark	\checkmark	\checkmark	\checkmark
	$NN\pi ee$ NLO	X	\checkmark	X	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark
	NNNNee LO	\checkmark	\checkmark	X	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark

Left-right symmetric models

Prezeau, Ramsey-Musolf, Vogel (2003), Savage (1999)