

${\it K}^+ ightarrow \pi^+ u \overline{ u}$ – NA62 First Result

Bob Velghe^{*}, on behalf of the NA62 collaboration

CIPANP 2018 Palm Springs, CA, May 29, 2018

^{*}TRIUMF, Vancouver, BC

Outline of the Talk

In blue: Dahl 1969, Gaillard 1974, Ellis 1988, Buchalla 1996, Mescia 2007, Brod 2011 and Buras 2015

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ – In the Standard Model

Flavour Changing Neutral Current: GIM suppression, involved CKM matrix elements are small ($|V_{\rm ts}| \approx 0.039$, $|V_{\rm td}| \approx 0.008$)

Hadronic matrix element related to $K^+ \to \pi^0 e^+ \nu_e$ decay F. Mescia and C. Smith [arXiv:0705.2025]

In terms of the CKM parameters:

$$\mathcal{B} \left(\mathsf{K}^{+} \to \pi^{+} \nu \overline{\nu} \right) = (8.39 \pm 0.30) \times 10^{-11} \left[\frac{|\mathsf{V}_{cb}|}{40.7 \times 10^{-3}} \right]^{2.8} \left[\frac{\gamma}{73.2^{\circ}} \right]^{0.74}$$

$$= (8.4 \pm 1.0) \times 10^{-11}$$
A.J. Buras et al [arXiv:1503.02693]

$$\mathcal{B}(\mathsf{K}^+ o \pi^+
u ar{
u}) = (1.73^{+1.15}_{-1.05}) imes 10^{-10}$$
 E787/949 Collaboration [arXiv:0808.2459]

$K^+ ightarrow \pi^+ u \overline{ u}$ – Beyond the Standard Model

$K^+ ightarrow \pi^+ \nu \bar{\nu}$ has been studied in many BSM scenarios. To name a few:

- ► Z' models, A. Buras et al [arXiv:1211.1896],[arXiv:1507.08672]
- Randall and Sandrum models, M. Blanke et al [arXiv:0812.3803]
- Littlest Higgs models, M. Blanke et al [arXiv:1507.06316]
- Supersymmetry, M. Tanimoto, K. Yamamoto [arXiv:1603.07960], T. Blažek, P. Maták [arXiv:1410.0055]
- Lepton Flavour Violation models. M. Bordone et al [arXiv:1705.10729]

A. J. Buras et al [arXiv:1507.08672]

M. Bor

Setup & Measurement Principle

NA62 / CERN SPS

NA62 is a kaon decay in flight experiment. The main objective is to measure $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ with a relative uncertainty around 10 %.

(Also, heavy neutrinos, lepton flavour universality, exotic physics, etc.)

- 2005 Proposal,
- 2009 Approved,
- 2010 Technical design,
- 2012 Technical run,
- 2014–15 Pilot runs,
- 2016–18 Physics runs.

14 countries, 31 institutes, 214 authors.

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ – Measurement Principle

The missing mass squared, $m_{\rm miss}^2 = (p_k - p_\pi)^2$, gives an handle on 92% of the background channels \rightarrow Core aspect of the experiment.

- Identification of K and π ,
- Measurements of *K* and π momentum,
- Vetoes for γ and μ ,
- \mathcal{O} (100 ps) timing capabilities for K π matching.

Main kaon backgrounds: $K^+ \rightarrow \mu^+ \nu_\mu (\gamma), K^+ \rightarrow \pi^+ \pi^0 (\gamma), K^+ \rightarrow \pi^+ \pi^-, K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e.$

Kaon Collected

This talk: **2016 data**, 4 weeks of data taking, 35 - 40% of the nominal intensity.

2017 data, about 23 weeks of data taking, 60 - 65% of the nominal intensity, higher data quality \rightarrow about 10× more data.

NA62 / CERN SPS - Layout

Beam: 75 GeV/ $c \pm$ 1%, K, π and p (6:70:23), 750 MHz.

Kaon & pion tracking, PID, calorimeters, hermetic photon vetos, muon veto, hodoscope and inelastic interactions veto \rightarrow redundancy.

Minimize beam – gas interactions: vacuum 10^{-6} mbar.

Signal selection sketch: K - π association, $15 < P_{\pi} < 35$ GeV/c, decay vertex in fiducial volume, no photon / muon / upstream activity.

Signal Selection

Kaon Identification & Tracking

Average beam intensity: 2016 \rightarrow 35 - 40%, 2017–2018 \rightarrow 60 - 65%.

KTag - Diff. Cherenkov counter,

- N₂ (H₂) gas radiator,
- Kaon time resolution \approx 70 ps,
- > 98% K ID efficiency.

 $\mathbf{x}_{c} = \mathbf{x}_{c} = \mathbf{x}_{c}$

GigaTracker – Silicon pixel tracker,

- Sensor surface is 60 by 27 mm Match beam size,
- ▶ Thickness \leq 0.5 % X/X₀ Minimize beam induced background,
- Temporal resolution < 150 ps K^+ π^+ matching.

KTag and GTK : 75% K^+ reconstruction and identification efficiency.

Pion Tracking

Pion spectrometer - STRAW

Four STRAW chambers,

- 4 views / chamber, 448 straws / view,
- 1.3 m long dipole (0.9 Tm),
- ► straws are 2.1 m long, 9.8 mm in diam., 36 µm walls,
- ► X/X₀ < 1.8%,
- 70% Ar, 30% CO₂.

> 95% reconstruction efficiency.

Particle Identification

Pion / muon separation - RICH & Calorimeters

Ring-imaging Cherenkov detector,

- Ne gas radiator,
- Ring time resolution \approx 80 ps,
- µ/π separation > 10² (15 < P < 35 GeV/c).

Likelihood PID discriminant. Efficiency 2.5 \times 10⁻³ / 0.75 for μ^+/π^+ .

Calorimeters,

- Electromagnetic calo. (LKr),
- Hadronic calo. (MUV1,2),
- Scintillator pads behind 80 cm Fe wall (MUV3).

MUV3 and BDT classifier. Efficiency 0.6 imes 10⁻⁵ / 0.77 for μ^+/π^+ .

Photon VETOs

Main cuts:

- No in-time signals in LAVs and SAV,
- No in-time signals in hodoscope and LKr (if not associated with π^+),
- Segment rejection in Straw.

Typical timing coincidence: $\pm 3/\pm 5$ ns, energy dependent for LKr.

Fraction of $K^+ \rightarrow \pi^+ \pi^0$ passing the cuts: 2.5 × 10⁻⁸.

Signal Selection - Result

Signal and control regions blinded, selection developed on about 10% of the data set.

Single Event Sensitivity

Single Event Sensitivity (SES)

 $K^+
ightarrow \pi^+ \pi^0$ (from control data) used as normalization channel.

$K^+ ightarrow \pi^+ u \overline{ u}$ acceptance (MC)	$(4.0\pm 0.1) imes 10^{-2}$
Random veto efficiency	0.76 ± 0.04
Trigger efficiency	0.87 ± 0.2

$$SES = (3.15 \pm 0.01_{stat.} \pm 0.24_{syst.}) \times 10^{-10}$$

Source	$\delta \operatorname{SES}\left(10^{-10}\right)$
Random veto	±0.17
Definition of $\pi^+\pi^0$ region	± 0.10
Simulation of π^+ interactions	±0.09
Νκ	±0.05
Trigger efficiency	±0.04
Extra activity	±0.02
GTK pileup simulation	±0.02
Momentum spectrum	±0.01
Total	±0.24

Backgrounds Evaluation

 $K^+ \rightarrow \pi^+ \pi^0 (\gamma)$

Assume that π^0 rejection cuts and kinematic cuts are independent, kinematic rejection measured on $\pi^+\pi^0$ with *tagged* π^0 ($\gamma\gamma$ in LKr).

- Radiative tail in R2 estimated from MC,
- Single-γ veto efficiency measured on data,
- π⁰γ rejection on the radiative tail estimated from data.

Radiative tail \times 6 bigger but $\pi^0\gamma$ rejection \times 30.

Region	$N_{\pi\pi}^{ m exp.}$	Region	$N^{\mathrm{exp.}}_{\pi\pi\gamma}$
R1	$0.022 \pm 0.004 \pm 0.002$	R1	0
R2	$0.037 \pm 0.006 \pm 0.003$	R2	$0.005\pm0.005_{\rm syst.}$

$K^+ ightarrow \pi^+ \pi^- e^+ \nu$

Estimated using MC, $\approx 4 \times 10^8$ events generated.

 $0.026 < m^2_{\rm miss} < 0.072~GeV^2/c^4$ region used for validation, free from other background processes.

Example: single π^- events, full $\pi\nu\overline{\nu}$ selection, STRAW multiplicity cuts inverted.

 $N_{\pi\pi e
u}^{
m exp.} = 0.018^{+0.024}_{-0.017} \pm 0.009$

Kinematic rejection in R2 $\leq 10^{-4},$ corrected for selection bias using the MC.

$$N_{\pi\pi\pi}^{
m exp.} = 0.002 \pm 0.001 \pm 0.002$$

$$\mathbf{K}^{+}
ightarrow \mu^{+} \nu_{\mu} \left(\gamma
ight)$$

Same approach as $K^+ \to \pi^+ \pi^0$ (γ), assume that PID rejection cuts and kinematic cuts are independent. Kinematic rejection measured on $\mu^+ \nu_{\mu}$ sample, applying the γ rejection.

Upstream Backgrounds

Upstream Backgrounds

Upstream Backgrounds

Backgrounds Summary

Process	Expected events		
	R1	R2	R1+R2
$K^+ ightarrow \pi^+ \pi^0 (\gamma)$	0.022	0.037	$0.064 \pm 0.007 \pm 0.006$
Upstream backgrounds	-	-	$0.050^{+0.090}_{-0.030}$
${\it K}^+ ightarrow \pi^+ \pi^- {\it e}^+ u$	0	0.018	$0.018^{+0.024}_{-0.017}\pm0.009$
$K^+ ightarrow \pi^+ \pi^+ \pi^-$	0	0.0020	$0.002 \pm 0.001 \pm 0.002$
${\sf K}^+ o \mu^+ u (\gamma)$	0.019	0.0012	$0.020 \pm 0.003 \pm 0.003$
Total backgrounds	-	-	$0.15 \pm 0.09 \pm 0.01$
$K^+ o \pi^+ u \overline{ u}$ (SM)	0.069	0.198	$0.267 \pm 0.001 \pm 0.020 \pm 0.032$

Preliminary Results

Preliminary Results

The Candidate in the RICH

20/22

2016 Data Set - Summary

Cut based analysis of about 4 weeks worth of data.

$$\mathcal{B}\left(\mathsf{K}^+
ightarrow \pi^+
u \overline{
u}
ight) < 14 imes 10^{-10}$$
 95% $\mathrm{C.L.}$

Candidate	1
N _K	$(1.21\pm0.02) imes10^{11}$
SES	$(3.15\pm0.01\pm0.24) imes10^{-10}$
Expected SM $K^+ ightarrow \pi^+ u \overline{ u}$	$0.267 \pm 0.001 \pm 0.020 \pm 0.032_{ext.}$
Expected background	$0.15 \pm 0.09 \pm 0.01$

Decay-in-flight technique works!

Prospects

More decays collected in 2017/2018:

- Data quality greatly improved in 2017/2018,
- Higher beam intensity (40–45% \rightarrow 60–65% of nominal),
- 161 days in 2018, 217 days scheduled for 2018,
- More sophisticated data analysis (cut base \rightarrow multi-variate).

Already $> 20 \times$ more data on tape.

About 20 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ SM events expected before LS2 (end of 2018).

$\mathcal{B}(\mathbf{K}^+ o \pi^+ \nu \overline{\nu})$ – Theoretical Error Budget

The branching ratio, summing over the three neutrino flavours reads [arXiv:hep-ph/0405132]:

$$\mathcal{B}\left(\mathcal{K}^{+} \to \pi^{+} \nu \overline{\nu}\right) = \kappa_{+} \left(1 + \Delta_{\mathsf{EM}}\right) \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X_{t}\left(x_{t}\right)\right)^{2} + \left(\frac{\operatorname{Re} \lambda_{c}}{\lambda} \left[P_{c} + \delta P_{c,u}\right] + \frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X_{t}\left(x_{t}\right)\right)^{2} \right], \quad (1)$$

where $\lambda_i = V_{is}^* V_{id}$, $x_t = m_t^2 / M_W^2$. The parameter $\Delta_{\text{EM}} \approx -0.3\%$ encodes the QED long distance radiative corrections [arXiv:0705.2025v2].

$$\kappa_{+} = (0.5173 \pm 0.0025) \times 10^{-10} \left(\frac{|V_{us}|}{0.225}\right)^{8}$$
, (2)

summarises the long-distance contributions extracted from the $K^+ \to \pi^0 e^+ \nu_e$ decay [arXiv:0705.2025v2].

I

$\mathcal{B}(\mathbf{K}^+ o \pi^+ \nu \overline{ u})$ – Theoretical Error Budget

Table: Error budget of the parameters entering in the $K \rightarrow \pi \nu \overline{\nu}$ branching ratio computation [arXiv:1503.02693].

Quantity	Error budget (%)	Comment
$ V_{cb} $	9.9	-
γ	6.7	-
P _c	1.8	Charm quark contribution
$\delta P_{c,u}$	2.9	Long distance charm-quark contribution
Xt	0.9	Top-quark contribution
Other	0.5	-

Bifurcation Analysis

Estimate the number of background event in the signal region (A) using control regions B',C' and D':

A: signal region

A': control region, B', B'', C', C'' and D': control samples.

If the two cuts are independent:

$$\rightarrow A = \frac{B'C'}{D'}$$

$$ightarrow$$
 A' = $\frac{B''C''}{D'}$