Contribution ID: 236

Type: Parallel

Status of the nEXO Experiment

Thursday, 31 May 2018 14:00 (20 minutes)

The planned next generation Enriched Xenon Observatory (nEXO) experiment is aiming to search for the neutrino-less double beta $(0\nu\beta\beta)$ decay from ¹³⁶Xe. nEXO has a sensitivity in the order of 10^{28} years on the half-life (T_{1/2}) of $0\nu\beta\beta$ decay from ¹³⁶Xe after 10 years'running, entirely covering the inverted mass hierarchy region. The nEXO detector is a time projection chamber (TPC). It has a cylindrical shape with a diameter of ~1.3 m and a drift length of ~1.2 m containing 5 tonnes of liquid xenon enriched to 90% (¹³⁶Xe). nEXO will use modular metal pads deposited on a quartz substrate to readout the ionisation signal and provide the spatial information of the event. nEXO will be implemented with ~4 m² silicon photomultiplier (SiPM) to collect the scintillation light in addition to the charge signal. Combining both charge and light signals, nEXO aims to have an energy resolution of 1% at the Q-value of the double beta decay from ¹³⁶Xe. In this talk, both the physics potential of nEXO and various R&D outcomes will be presented.

E-mail

sxwu@stanford.edu

Collaboration name

nEXO

Primary author: WU, Shuoxing (Stanford University)Presenter: WU, Shuoxing (Stanford University)Session Classification: Neutrino Masses and Neutrino Mixing

Track Classification: NMNM