The EMC Effect - New Insights and Future Studies

Dave Gaskell Jefferson Lab

CIPANP May 29-June 3, 2018

Outline

- Quarks in the Nucleus
- Overview of the EMC Effect
 - Discovery and dedicated measurements
 - Known properties of EMC effect
- Recent experimental results
 - Local density dependence
 - Link to Short Range Correlations?
- New Observables and Avenues for Exploration
- Future measurements

DIS: Structure Functions and Quarks in the Nucleus

Deep Inelastic Scattering provides access to quark distributions in *nucleon* via structure functions:

0.4

X

0.6

0.8

0.2

Nuclear binding energies (~MeV) small compared to typical DIS energies (~GeV) \rightarrow (Naïve) expectation was that nuclear effects in DIS would be small

$$R = \frac{F_2^A}{ZF_2^p + (A - Z)F_2^n}$$

Figure from Bickerstaff and Thomas, J. Phys. G 15, 1523 (1989) Calculation: Bodek and Ritchie PRD 23, 1070 (1981)

0

EMC Effect: Discovery and Confirmation

Discovery of the modification of $F_2(x)$ demonstrated that quark distributions are modified in the nucleus \rightarrow This suggests some new, unexplained dynamics at play in nuclear environment

Bodek et al, PRL 50, 1431 (1983) and PRL 51, 534 (1983)

EMC Effect Measurements

Laboratory/collabor ation	Beam	Energy (GeV)	Target	Year
SLAC E139	е	8-24.5	D , ⁴ He, Be, C, Ca, Fe, Ag, Au	1994,1984
SLAC E140	е	3.75-19.5	D, Fe, Au	1992,1990
CERN NMC	μ	90	⁶ Li, ¹² C, ⁴⁰ Ca	1992
	μ	200	D , ⁴He, C, Ca	1991, 1995
	μ	200	Be, C , Al, Ca, Fe, Sn, Pb	1996
CERN BCDMS	μ	200	D, Fe	1987
	μ	280	D , N, Fe	1985
CERN EMC	μ	100-280	D , Cu	1993
	μ	280	D , C, Ca	1988
	μ	100-280	D , C, Cu, Sn	1988
	μ	280	H, D , Fe	1987
	μ	100-280	D, Fe	1983
FNAL E665	μ	490	D, Xe	1992
	μ	490	D, Xe	1992
DESY HERMES	е	27	D , ³ He, N, Kr	2000, 2003
Jefferson Lab	е	6	D , ³ He, ⁴ He, Be, C, Cu, Au	2009
	е	6	D , C, Cu, Au	2004 (thesis)

Jefferson Lab

Geesaman, Saito, and Thomas, Ann. Rev. Nucl. Sci. 45, 337 (1995) – updated

Properties of the EMC Effect

Global properties of the EMC effect

- 1. Universal x-dependence
- 2. Little Q² dependence
- 3. EMC effect increases with *A*
- → Anti-shadowing region shows little nuclear dependence

Explaining the EMC Effect

- Plethora of models attempting to explain the EMC Effect
- "Conventional" nuclear physics not sufficient
 - Fermi motion dominates at large x, but minimal impact elsewhere
 - Binding effects small, nuclear pions ruled out by other measurements (Drell-Yan)
- Other models require more "exotic" effects
 - Dynamical rescaling $F_2^A(x,Q^2) = F_2^N(x,\xi_A(Q^2) \cdot Q^2)$
 - Multiquark clusters \rightarrow 6, 9, 12 ... quark configurations
- More recently, models related to SRCs under investigation

35 Years of the EMC Effect

- No clear consensus on origin of EMC Effect
 - Conventional nuclear physics contributions can be handled with more precision, but still cannot explain whole effect
 - Testing models challenging only a few observables (Inclusive DIS and Drell-Yan)
- Settling the question of the origin of the EMC effect will require new information
 - Explore effect for wider range of nuclei (different A, n/p ratios..)
 - New experimental avenues beyond inclusive DIS cross sections required

Nuclear Dependence of EMC Effect

SLAC E139 explored detailed *nuclear dependence* to gain new insight to EMC Effect

Provided the most extensive and precise data set for x>0.2

Measured σ_A/σ_D for A=4 to 197

- → ⁴He, ⁹Be, C, ²⁷Al, ⁴⁰Ca, ⁵⁶Fe, ¹⁰⁸Ag, and ¹⁹⁷Au
- → Verified that the x dependence was roughly constant

Nuclear Dependence of EMC Effect

SLAC E139 explored detailed nuclear dependence to gain new insight to EMC Effect

Provided the most extensive and precise data set for x > 0.2

<u>Measured σ_A/σ_D for A=4 to 197</u>

- \rightarrow ⁴He, ⁹Be, C, ²⁷Al, ⁴⁰Ca, ⁵⁶Fe, ¹⁰⁸Ag, and ¹⁹⁷Au
- \rightarrow Verified that the x dependence was roughly constant

Jefferson Lab

E139 results consistent with both A and density dependent pictures

10

JLab E03103

JLab E03103 goal: More information on nuclear dependence \rightarrow emphasis on light nuclei: ³He, ⁴He, Be, C

→ New definition of size of EMC effect: |dR/dx| for 0.35<x<0.7</p>

→ 3 He, 4 He, C, EMC effect scales well with density – Be does not!

Scaled nuclear density = $(A-1)/A < \rho >$ \rightarrow remove contribution from struck nucleon from ab initio few-body calculations→ [S.C. Pieper and R.B. Wiringa, Ann. Rev.Nucl. Part. Sci 51, 53 (2001)]

EMC Effect and Local Nuclear Density

⁹Be has low average density \rightarrow Large component of structure is $2\alpha+n$

 \rightarrow Most nucleons in tight, α -like configurations

EMC effect driven by *local* rather than *average* nuclear density

Jefferson Lab

Can this "local density" picture be tied to other observables?

EMC Effect and Short Range Correlations

Weinstein et al, Hen et al showed there is a linear correlation between size of EMC effect and Short Range

 \rightarrow Nucleons in SRC pairs have high momentum - imply EMC Effect from "high virtuality" nucleons?

1.8

1.6

Further Studies of the EMC Effect

EMC effect has been studied extensively – what more can we learn?

- \rightarrow Additional light and heavy nuclei
 - → Light nuclei allow use of "exact" nuclear wave functions
 - → Explore EMC-SRC connection via A dependence at ~ fixed N/Z, N/Z dependence at ~ fixed A
- Tagged measurements Explore the EMC effect for different parts of nuclear wave function
- → Flavor dependence Is EMC effect different for up and down quarks?
- → Polarized EMC Effect

JLab E12-10-008: More detailed study of Nuclear Dependence

Spokespersons: J. Arrington, A. Daniel, N. Fomin, D. Gaskell

E03-103: EMC at 6 GeV

- \rightarrow Focused on light nuclei
- → Large EMC effect for ${}^{9}\text{Be}$
- \rightarrow Local density/cluster effects?

J. Seely, et al., PRL 103, 202301 (2009)

E12-10-008: EMC effect at 12 GeV

- \rightarrow Higher Q², expanded range in x (both low and high x)
- → Light nuclei include ¹H, ²H, ³He, ⁴He, ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹²C
- → Heavy nuclei include ⁴⁰Ca, ⁴⁸Ca and Cu and additional heavy nuclei of particular interest for EMC-SRC correlation studies

See talk by Eric Pooser (Wednesday)

JLab: E12-10-008 (EMC) and E12-06-105 (x>1) – Exploring the EMC-SRC Connection

 Both experiments use wide range of nuclear targets to study impact of cluster structure, separate mass and isospin dependence on SRCs, nuclear PDFs

Light nuclei: Reliable calculations of nuclear structure (e.g. clustering)

64*Cu

108*Ag

119*Sn

197***Au**

232**T**

27**A**

40*,48**Ca**

48**T**i

54**Fe**

58,64Ni

 Experiments will use a common set of targets to provide more information in the EMC-SRC connection

Heavier nuclei: Cover range of N/Z at ~fixed values of A

JLab: E12-10-008 (EMC) and E12-06-105 (x>1) – Exploring the EMC-SRC Connection

- Both experiments use wide range of nuclear targets to study impact of cluster structure, separate mass and isospin dependence on SRCs, nuclear PDFs
- Experiments will use a common set of targets to provide more information in the EMC-SRC connection

³He Be 6,7L 1H Light nuclei: Reliable ⁹Be 2H calculations of ⁴He ۴He nuclear structure 10,11**R** ³He (e.g. clustering) Data from ¹⁰B, ¹¹B taken as part of commissioning experiments - Spring 2018 ldR_{EMC}/dx JLab + SLAC existing data Hall C - 12 GeV, year 1 "Au 0.4 ²⁷AI ¹²C 0.2 ³He 0 0.5 1.5 2 2.5 3 3.5 0 4.5 4

Heavier nuclei: Cover range of N/Z at ~fixed values of A

Jefferson Lab

a₂-1

Spectator Tagging and the EMC Effect

Spectator tagging can be used to determine the kinematics of the struck nucleon

2 complementary programs of "tagged EMC" measurements at JLab

Low energy recoil detector for reconstructing residual, recoiling nucleus

Backward angle proton/neutron detectors to sample high momentum (hundreds of MeV) nucleons

E12-11-107 (Hall C) and E12-11-003a (Hall B)

Spokespersons: O. Hen, L. Weinstein, S. Gilad, S. Wood. H. Hakobyan

Measure structure function of high momentum nucleon in **deuterium** by tagging the spectator

 \rightarrow Take ratio of yield at large x (EMC region) to low x (no EMC expected) \rightarrow Requires new, large acceptance proton/neutron detectors at back angles

ALERT Program in Hall B

Flavor Dependence of the EMC Effect

Mean-field calculations predict a flavor dependent EMC effect for $N \neq Z$ nuclei

Isovector-vector mean field (ρ) causes u (d) quark to feel additional vector attraction (repulsion) in $N \neq Z$ nuclei

Cloët, Bentz, and Thomas, PRL 102, 252301 (2009)

In principle, models that predict the EMC Effect generated by "high momentum" nucleons may also result in some flavor dependence

Experimentally, this flavor dependence has not been observed directly

Flavor dependence could be measured using PVDIS, pion Drell-Yan, SIDIS, unpolarized EMC Effect...

Flavor dependence from Inclusive ⁴⁰Ca and ⁴⁸Ca

Measure inclusive EMC effect for similar A, different N/Z

CBT model predicts a ~3% effect for ⁴⁸Ca at x=0.6 $\rightarrow N/Z = 1.4$

If there is no flavor dependence, difference between ⁴⁰Ca and ⁴⁸Ca should be less than 1% (SLAC E139 A-dependent parametrization)

Measurement of unpolarized EMC effect in ⁴⁰Ca and ⁴⁸Ca provides **some** sensitivity to possible flavor dependent effect \rightarrow E12-10-008 (Hall C)

Χ

Flavor Dependence from PVDIS

$$A_{PV} \approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[\frac{a_1(x)}{1+(1-y)^2} \frac{1-(1-y)^2}{1+(1-y)^2} a_3(x) \right] \qquad \text{Suppressed by small values of } C_2, \text{ y-factor}$$

$$a_1(x) = 2 \frac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}$$

C_{1u}=-0.19, C_{1d}=0.34

Cloët, Bentz, and Thomas, PRL 109, 182301 (2012)

Flavor Dependence from PVDIS

$$A_{PV} \approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[\frac{a_1(x)}{1+(1-y)^2} + \frac{1-(1-y)^2}{1+(1-y)^2} \frac{a_3(x)}{1+(1-y)^2} \right]$$

Precise measurement of PV asymmetry from ⁴⁸Ca could be made with large acceptance device (SOLID spectrometer) in Hall A (proposed, not yet approved)

EMC Flavor Dependence: Pion Drell-Yan

$$\frac{d\sigma_{\pi^{\pm}A}}{dx_{\pi}dx_{2}} = \frac{4\pi\alpha^{2}}{9sx_{\pi}x_{2}}\sum_{q}e_{q}^{2}[q_{\pi^{\pm}}(x_{\pi})\bar{q}_{A}(x_{2}) + \bar{q}_{\pi^{\pm}}(x_{\pi})q_{A}(x_{2})]$$

Experiment	Flavor Ind.	Flavor dep.		
NA3	1.3	0.5		
NA10	0.60	2.5		
Omega (low Q ²)	6.2	3.2		
Omega (high Q ²)	1.4	0.96		
	χ²/DOF			

Pion-induced Drell-Yan sensitive to potential flavor dependence, but existing data lack precision

Dutta, Peng, Cloët, DG, PRC 83, 042201 (2011)

A Dependence of Anti-quark Distributions

→ Proton Drell-Yan process sensitive to anti-quark distributions in the target

 \rightarrow E772 at Fermilab measured no A dependence over limited x range, with limited precision

Ruled out significant contributions from nuclear pions

D.M. Alde et al., PRL64: 2479 (1990)

E906 and Nuclear Anti-quarks

E906 (SeaQuest) at Fermilab

 \rightarrow Primary goal measurement of sea-quark asymmetry in proton

- → Finished data taking in 2017
- \rightarrow Also measured Drell-Yan from nuclear targets (C, Fe, and W)

Extends to higher x than E772

Jefferson Lab

 \rightarrow x up 0.5 – regime where "EMC Effect" should be significant

B. Dannowitz, PhD Thesis, UIUC – not official E906 results

Polarized EMC Effect

Cloët, Bentz, and Thomas, Phys. Lett. B 642 (2006) 210-217

JLab E12-14-001 in Hall B →Uses ⁷LiD solid polarized target

Polarized EMC effect provides another possible handle on connection to SRCs → Smaller fraction of polarized nucleons involved in SRCs

Summary

- 35 years of inclusive experiments have provided a lot of information about the properties of the EMC Effect
 - No consensus on origin
- New experimental and theoretical results have motivated several avenues of investigation
 - Connection with Short Range Correlations
 - Tagged measurements
 - Flavor dependence (valence)
 - EMC effect in polarized quark distributions
 - Sea-quarks
- Jefferson Lab 12 GeV program will cover much of the above
 - Drell-Yan program at Fermilab (sea quarks) and COMPASS (flavor dependence) will also provide important input

EXTRA

EMC Effect and SRC

EMC-SRC connection became more intriguing with the addition of Be SRC data → Both EMC and SRC display similar dependence on nuclear density

JLab E03103 and the Nuclear Dependence of the EMC Effect

New definition of "size" of the EMC effect

→Slope of line fit from x=0.35 to 0.7

Assumes shape is universal for all nuclei

→Normalization
uncertainties a much
smaller relative
contribution

Flavor dependence and SRCs

 $u_A = \frac{Z\tilde{u}_p + N\tilde{d}_p}{\varDelta} \quad d_A = \frac{Z\tilde{d}_p + N\tilde{u}_p}{\varDelta}$

High momentum nucleons in the nucleus come primarily from *np* pairs

 \rightarrow The relative probability to find a high momentum proton is larger than for neutron for N>Z nuclei

Under the assumption the EMC effect comes from "high virtuality" (high momentum nucleons), effect driven by protons (u-quark dominates) \rightarrow similar flavor dependence is seen in some "mean-field" approaches

