IceCube/DeepCore Results on Neutrino Properties Using Atmospheric Neutrinos



Feifei Huang Pennsylvania State University for the IceCube Collaboration CIPANP 2018



#### Outline

- Neutrino mixing (PMNS) matrix &  $\nu$  experiments
- Physics motivation:
  - Oscillation parameters measurement
  - Tau neutrino appearance, PMNS matrix unitarity
- Atmospheric neutrinos
- IceCube/DeepCore
- Analysis:
  - Event selections; Systematics
- Results



#### PMNS matrix & v experiments





Feifei Huang, May 31 2018, CIPANP

Based on Parke & Ross-Lonergan Phys. Rev. D 93, 113009 (2016)

### Physics Motivation: What can we learn fromatmospheric neutrinos?

- Measure oscillation parameters  $|\Delta m^2_{23}| \operatorname{and} \sin^2 \theta_{23}$  via  $\nu_{\mu}$ disappearance  $(P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 (\Delta m^2_{31} \frac{L}{4E})^{\mu})$ 
  - To answer whether  $\theta_{23}$  is maximal, in the upper or lower octant
  - Important in resolving neutrino mass ordering
- Measure  $v_{\mu} \rightarrow v_{\tau}$  appearance, i.e. measure:

measured  $u_{ au}$  rate

 $v_{\tau}$  normalization = expected  $\nu_{\tau}$  rate (in standard oscillation paradigm)

- Help better constrain PMNS matrix unitarity via  $v_{\tau}$  appearance analysis (together with other experiments)
- Other topics (not discussed here):
  - Neutrino mass ordering, Non-standard Interaction, Sterile neutrinos, ...

#### **Unitarity of PMNS matrix:**

• Unitarity of PMNS matrix means:

$$egin{array}{lll} U^{\dagger}U = I \ UU^{\dagger} = I \end{array} & U = egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{pmatrix} \end{array}$$

i.e. the 12 equations below:

$$egin{aligned} &|U_{l1}|^2+|U_{l2}|^2+|U_{l3}|^2=1\ (l=e,\mu, au)\ &|U_{ei}|^2+|U_{\mu i}|^2+|U_{ au i}|^2=1\ (i=1,2,3) \end{aligned}$$

$$egin{aligned} &|U_{lpha 1}U_{eta 1}^*+U_{lpha 2}U_{eta 2}^*+U_{lpha 3}U_{eta 3}^*|^2=0\ ((lpha,eta)=(e,\mu),(e, au),(\mu, au))\ &|U_{ei}U_{ej}^*+U_{\mu i}U_{\mu j}^*+U_{ au i}U_{ au j}^*|^2=0\ ((i,j)=(1,2),(1,3),(2,3)) \end{aligned}$$

PennState

#### **Current constraints on unitarity:**

PennState



Feifei Huang, May 31 2018, CIPANP

6

## Why is $v_{\tau}$ appearance important?

- $\tau$  sector is the least constrained part of PMNS matrix  $v_{\tau}$  appearance experiments measure  $U_{\tau 3}$  and  $U_{u 3}$ 
  - So a precision measurement in  $v_{\tau}$  appearance can be beneficial. Together with other experiments, it can help constrain the PMNS unitarity much better
- Also for the measurement of  $v_{\tau}$  normalization, a deviation from 1 could indicate new physics.

#### What are atmospheric neutrinos?





#### Production of atmospheric v

#### flux model: HAKKM, PhysRevD.92.023004





- Cosmic ray: primarily protons
- Protons collide with air particles:  $p^{10^0} + N \rightarrow \pi^+(K^+) + \pi^-(K^-) + \dots$

 π/K decay & μ decay – (only listing main ones):





#### Oscillations of atmospheric v



- Tau neutrino appearance: almost all from  $v_{\mu}$
- Muon neutrino disappearance: mainly into  $\tilde{v}_{\tau}$ 
  - $egin{aligned} P(
    u_{\mu} 
    ightarrow 
    u_{\mu}) &pprox 1 \sin^2 2 heta_{23} \sin^2 \left(\Delta m_{31}^2 rac{L}{4E}
    ight) & L &\sim D\cos( heta_{zen}) \ P(
    u_{\mu} 
    ightarrow 
    u_{ au}) &pprox \sin^2 2 heta_{23} \sin^2 \left(\Delta m_{31}^2 rac{L}{4E}
    ight) & ext{(D: Earth diameter)} \end{aligned}$





## IceCube/DeepCore



• IceCube:

- 1 km<sup>3</sup> ice; at the South Pole, 86 strings × 60 DOMs
- Sparse part: string horizontal spacing: 125m, DOM vertical spacing: 17m
- Goals: neutrino astronomy and multimessenger astrophysics, cosmic ray physics, dark matter, glaciology
- Energy range: up to few PeV
- DeepCore: dense part of IceCube
  - 8 strings, DOM vertical spacing: 7m & 10 m + 7 standard strings (17m)
  - Goals: atmospheric neutrino oscillations, WIMP annihilations, galactic supernova neutrinos, and point sources of neutrinos
  - Energy range: 5 100 GeV

11

#### Detection of atmospheric v



 Optical sensors in IceCube detect Cherenkov light emitted by secondary particles of v interaction

- Two event topologies:
  - Cascade-like (events without visible  $\mu$  track; most of  $v_{\tau}$  events end up here)
  - Track-like (mainly  $v_{\mu}$  charged-current events that leave a visible  $\mu$  track)

## Analysis

- Reconstruct the incoming v based on the light observed by optical modules
  - Bin events (e.g. a 3-d histogram: energy, direction, topology)
- Compare how different the observed histogram is from simulation:
   Get the best agreement (i.e. maximize binned likelihood) by varying the physics parameter(s) of interest (along with nuisance parameters)
- Fit statistic  $\chi^2$  takes into account the MC statistical uncertainty as well as systematic uncertainties.

$$\chi^2 = \sum_{i \in bins} rac{(n_i^{exp} - n_i^{data})^2}{(\sigma_i^{exp})^2 + (\sigma_i^{data})^2} + \sum_{j \in syst} rac{(s_j - \hat{s}_j)^2}{\hat{\sigma}_{s_j}^2}$$



#### **Event selections**:

- Analysis 1: lower-statistics, lower background, higher-purity
  - Optimized for  $v_{\mu}$  disappearance analysis
  - Atmospheric muon background: data-driven template estimation
  - $\circ$  41k events\*/ 3 years
  - Used in the muon disappearance result: PhysRevLett.120.071801

- Analysis 2: higher-statistics, higher background, lower purity
  - Optimized for  $v_{\tau}$  appearance analysis
  - Atmospheric muon background: MC simulation
  - 62k events\*/ 3 years

\* For the  $v_{\tau}$  appearance analysis, it is natural for IceCube to measure both CC and NC events The expected  $v_{\tau}$  (CC+NC) events in two analyses are: 1.3k and 2.5k, respectively Compare with other  $v_{\tau}$  experiments: OPERA: 10 CC events in 5 yr Super-K: 338 CC events in 15 yr



#### **Systematics**



#### **Production**:

- spectral index,  $v_e/v_\mu$  ratio, v/anti-v flux ratio\*, up/horizontal flux ratio\*
- Oscillation: 2.
  - $\theta_{23}$ ,  $\Delta m_{31}$  (physics parameters for Ο numu analysis, but systematics for nutau analysis)

- 3 3. **Detection**:
  - Neutrino interaction: : Axial mass OE Ο and RES (from GENIE)
  - **DOM: DOM efficiency** Ο
  - Ice: hole ice (3 parameters), bulk ice Ο scattering & absorption
- Normalization: background  $\mu$  norm., NC 4. norm.. overall norm.



Feifei Huang, May 31 2018, CIPANP

\* Barr et al. PRD74. 094009

## Results



#### L/E distributions( $v_{...}$ disappearance analysis)

log10 L/E distribution; cascade + track



Good data/MC agreement for both (Top: Analysis 2, Down: Analysis 1)



#### **Atmospheric Oscillation parameters**

![](_page_17_Figure_1.jpeg)

 Analysis 1 (primary result, PRL2018): Prefers maximal mixing:

 $\Delta m^2_{23} = 2.31^{+0.11}_{-0.13} imes 10^{-3} {
m eV^2(NO)}$ 

 $\sin^2( heta_{23}) = 0.51^{+0.07}_{-0.09}$ 

(NO: normal mass ordering)

• Analysis 2:

90% contour compatible with Analysis 1 Best fit: non-maximal mixing:

$$egin{aligned} \Delta m^2_{23} &= 2.55^{+0.12}_{-0.11} imes 10^{-3} \mathrm{eV^2(NO)} \ \sin^2( heta_{23}) &= 0.58^{+0.04}_{-0.13} \end{aligned}$$

Agrees with Analysis 1 within  $1\sigma$  statistical fluctuation using the same analysis method. Shift comes from the considerations of correlations among detector uncertainties and bulk ice systematics.

![](_page_17_Picture_10.jpeg)

## L/E distributions( $v_{\tau}$ appearance analysis)

 $v_{\tau}$  Analysis 1

![](_page_18_Figure_2.jpeg)

Good data/MC agreement for both

![](_page_18_Picture_4.jpeg)

## $v_{\tau}$ analysis results:

- $v_{\tau}$  CC+NC norm. = 1 in the standard oscillation picture
- Analysis 1
  - $\circ$  CC+NC: 0.59 + 0.31 0.25 (1 $\sigma$ )
- Analysis 2 (Primary result):
  - CC+NC:  $0.73 + 0.31 0.24 (1\sigma)$
- Both consistent with standard oscillations
  - Previous experiments: Super-K:
     1.47 ± 0.32, OPERA: 1.1 + 0.5 0.4

![](_page_19_Figure_8.jpeg)

![](_page_19_Picture_9.jpeg)

#### Summary/Outlook

- IceCube/DeepCore results on neutrino oscillations:
  - $\circ v_{\mu}$  disappearance result:
    - Consistent with maximal mixing
  - $\circ$   $v_{\tau}$  appearance result:
    - $v_{\tau}$  (CC+NC) norm. = 0.73 + 0.31 0.24 , precision comparable to world's best result
    - Consistent with the standard 3-flavor oscillation paradigm
- More years of data available
- Expecting improvement on event reconstruction, systematics uncertainties calculation

![](_page_20_Picture_9.jpeg)

# Thanks!

![](_page_21_Picture_1.jpeg)

# Backup

![](_page_22_Picture_1.jpeg)

#### **Neutrino oscillations**

- Flavor eigenstates  $|\nu_l\rangle(l = e, \mu, \tau)$  are superpositions of mass eigenstates  $|\nu_i\rangle(i = 1, 2, 3)$ , PMNS matrix describes the mixing.
  - Mass eigenstates travel with different speeds
  - One flavor may change to another after travelling some distance (L)
- Oscillation probability is:

$$egin{aligned} P_{lpha o eta} &= \delta_{lphaeta} - 4 \sum_{i>j} ext{Re}(U^*_{lpha i} U_{eta i} U_{lpha j} U^*_{eta j}) \sin^2 \left(rac{\Delta m^2_{ij} L}{4E}
ight) \ &+ 2 \sum_{i>j} ext{Im}(U^*_{lpha i} U_{eta i} U_{lpha j} U^*_{eta j}) \sin \left(rac{\Delta m^2_{ij} L}{2E}
ight), \end{aligned}$$

where 
$$\Delta m^2_{ij} = m^2_i - m^2_j$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

• The phase responsible for the oscillation is:

$$rac{\Delta m^2 \, c^3 \, L}{4 \hbar E} pprox 1.27 imes rac{\Delta m^2}{\mathrm{eV}^2} rac{L}{\mathrm{km}} rac{\mathrm{GeV}}{E}$$

#### **Neutrino oscillations**

- Assume standard 3-flavor oscillation:
  - $\circ~$  PMNS matrix can be parametrized by three mixing angles and CP violation term  $\theta_{23},\,\theta_{13},\,\theta_{12},\,\delta$  :

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ where } c_{ij} = \cos\theta_{ij} \text{ , } s_{ij} = \sin\theta_{ij}$$

• PMNS matrix is unitary under the standard 3-flavor oscillation theory, i.e.:

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \stackrel{|U_{l1}|^{2} + |U_{l2}|^{2} + |U_{\mui}|^{2} = 1 \ (i = 1, 2, 3) \\ |U_{\alpha1}U_{\beta1}^{*} + U_{\alpha2}U_{\beta2}^{*} + U_{\alpha3}U_{\beta3}^{*}|^{2} = 0 \ ((\alpha, \beta) = (e, \mu), (e, \tau), (\mu, \tau)) \\ |U_{ei}U_{ej}^{*} + U_{\mu i}U_{\mu j}^{*} + U_{\tau i}U_{\tau j}^{*}|^{2} = 0 \ ((i, j) = (1, 2), (1, 3), (2, 3))$$
**remState Feifei Huang, May 31 2018, CIPANP**

## IceCube/DeepCore $v_{\tau}$ results:

- CC-only result (1σ):
  - Analysis 1: 0.43 + 0.35 0.31
  - Analysis 2 (Primary result):
     0.566 + 0.356 0.303

![](_page_25_Figure_4.jpeg)

![](_page_25_Picture_5.jpeg)

## Previous $v_{\tau}$ appearance experiments

- Super-K <u>2017 result</u>:
  - $\circ$  significance 4.6  $\sigma$
  - $v_{\tau}$  CC norm: 1.47 ± 0.32 (68%)
  - 338.1 ± 72.7 CC events in 14.5 yr
- OPERA <u>2018 result</u>:
  - $\circ~$  significance 6.1  $\sigma$
  - $v_{\tau}$  CC norm: 1.1 + 0.5 0.4 (68%)
  - $\circ$  10 CC events in 5 yr (background 2.0 +/- 0.4)

![](_page_26_Picture_11.jpeg)

### PMNS matrix & v expriments

| Experiment                                                                                           | Measured quantity with unitarity                                                                                                              | Without unitarity                                                                                                  | Normalisation                                                               |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $\begin{array}{l} \text{Reactor SBL} \\ (\overline{\nu}_e \rightarrow \overline{\nu}_e) \end{array}$ | $4 U_{e3} ^2 \left(1 -  U_{e3} ^2\right) = \sin^2 2\theta_{13}$                                                                               | $4 U_{e3} ^2 \left(U_{e1} ^2 +  U_{e2} ^2\right)$                                                                  | $( U_{e1} ^2 +  U_{e2} ^2 +  U_{e3} ^2)^2$                                  |
| $\begin{array}{c} \text{Reactor LBL} \\ (\overline{\nu}_e \rightarrow \overline{\nu}_e) \end{array}$ | $4 U_{e1} ^2 U_{e2} ^2 = \sin^2 2\theta_{12} \cos^4 \theta_{13}$                                                                              | $4 U_{e1} ^2 U_{e2} ^2$                                                                                            | $( U_{e1} ^2 +  U_{e2} ^2 +  U_{e3} ^2)^2$                                  |
| SNO $(\phi_{CC}/\phi_{NC}$<br>Ratio)                                                                 | $ U_{e2} ^2 = \cos^2 	heta_{13} \sin^2 	heta_{12}$                                                                                            | $ U_{e2} ^2$                                                                                                       | $ U_{e2} ^2 +  U_{\mu 2} ^2 +  U_{\tau 2} ^2$                               |
| $\frac{\rm SK/T2K/MINOS}{(\nu_{\mu} \rightarrow \nu_{\mu})}$                                         | $\frac{4 U_{\mu3} ^2 \left(1 -  U_{\mu3} ^2\right)}{4\cos^2\theta_{13}\sin^2\theta_{23} \left(1 - \cos^2\theta_{13}\sin^2\theta_{23}\right)}$ | $4 U_{\mu3} ^2 \left(U_{\mu1} ^2 +  U_{\mu2} ^2\right)$                                                            | $( U_{\mu 1} ^2 +  U_{\mu 2} ^2 +  U_{\mu 3} ^2)^2$                         |
| $\begin{array}{c} \text{T2K/MINOS} \\ (\nu_{\mu} \rightarrow \nu_{e}) \end{array}$                   | $4 U_{e3} ^2 U_{\mu3} ^2 = \sin^2 2\theta_{13} \sin^2 \theta_{23}$                                                                            | $-4 \operatorname{Re} \{ U_{e3}^* U_{\mu 3} \left( U_{e1}^* U_{\mu 1} + U_{e2}^* U_{\mu 2} \right) \}$             | $ U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* ^2$             |
| $\frac{\text{SK}/\text{OPERA}}{(\nu_{\mu} \rightarrow \nu_{\tau})}$                                  | $4 U_{\mu3} ^2 U_{\tau3} ^2 = \sin^2 2\theta_{23} \cos^4 \theta_{13}$                                                                         | $-4 \operatorname{Re} \{ U_{\tau 3}^* U_{\mu 3} \left( U_{\tau 1}^* U_{\mu 1} + U_{\tau 2}^* U_{\mu 2} \right) \}$ | $ U_{\mu 1}U_{\tau 1}^* + U_{\mu 2}U_{\tau 2}^* + U_{\mu 3}U_{\tau 3}^* ^2$ |

TABLE I: Example experiments and the leading order functions of  $U_{\text{PMNS}}$  matrix elements they measure, in both the unitary and non-unitary case. The third column shows the normalisation that can be bound if the experimental measurements of the fluxes and backgrounds are known to a high enough degree.

![](_page_27_Picture_3.jpeg)

#### Feifei Huang, May 31 2018, CIPANP

Parke & Ross-Lonergan Phys. Rev. D 93, 113009 (2016)

#### L/E distributions (PRL 2018)

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

PhysRevLett.120.071801

![](_page_28_Picture_4.jpeg)

Feifei Huang, May 31 2018, CIPANP

## **Oscillation parameters (PRL 2018)**

![](_page_29_Figure_1.jpeg)

- Best fit values:
  - $egin{aligned} \Delta m^2_{23} &= 2.31^{+0.11}_{-0.13} \ imes 10^{-3} \mathrm{eV^2(NO)} \ \sin^2 heta_{23} &= 0.51^{+0.07}_{-0.09}(\mathrm{NO}) \end{aligned}$
- Result prefers maximal mixing

PhysRevLett.120.071801

![](_page_29_Picture_6.jpeg)

Feifei Huang, May 31 2018, CIPANP